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Semantic Graphs
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e WordNet-like resources are curated to

describe relations between word senses Animal <—"52"_ pan) a,<_,_._ Bear
e The graph is directed
o Edges have form <S, r, T>: <zebra, is-a, equine> W“a'e
o  Still, some relations are symmetric Fish V8l oy & Tvesin
e Relation types include:
o Hypernym (is-a) <zebra, r, equine>
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Meronym (is-part-of)
Is-instance-of
Derivational Relatedness

<tree, r, forest>
<rome, r, capital>
<nice, r, nicely>
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Semantic Graphs - Relation Prediction

e The task of predicting relations (zebra is a <BLANK>)
e Local models use embeddings-based composition for
scoring edges
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e The task of predicting relations (zebra is a <BLANK>)
e Local models use embeddings-based composition for
scoring edges

g = - (H[@QOOOQO]+[0000000] - [ooooooo]H)
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Translational Embeddings (transE) [Bordes et al. 2013]



Semantic Graphs - Relation Prediction
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The task of predicting relations (zebra is a <BLANK>)

Local models use embeddings-based composition for

scoring edges
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Full-Bilinear (Bilin) [Nickel et al. 2011]
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Semantic Graphs - Relation Prediction

e The task of predicting relations (zebra is a <BLANK>)

e Local models use embeddings-based composition for
scoring edges

e Problem: task-driven method can learn unreasonable
graphs
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Incorporating a Global View

e We want to avoid unreasonable graphs

e Imposing hard constraints isn’t flexible enough

o  Only takes care of impossible graphs
o Requires domain knowledge

e We still want the local signal to matter - it’s very strong.



Incorporating a Global View

e We want to avoid unreasonable graphs

e Imposing hard constraints isn’t flexible enough

o  Only takes care of impossible graphs
o Requires domain knowledge

e We still want the local signal to matter - it’s very strong.
e Our solution: an additive, learnable global graph score

Score(<zebra, hypernym, equine>| WordNet) =

Slocal(edge) + A(Sglobal(WN + edge), SglobaI(WN))




Global Graph Score

e Based on a framework called Exponential Random Graph Model (ERGM)
e The score sgoba(WN) is derived from a log-linear distribution across possible
graphs that have a fixed number n of nodes

Peen(VWN) o exp(8' - d(WN))

e

Weights Graph
vector features
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Global Graph Score

e Based on a framework called Exponential Random Graph Model (ERGM)
e The score sgoba(WN) is derived from a log-linear distribution across possible
graphs that have a fixed number n of nodes

Peen(VWN) o exp(8' - d(WN))

e

Weights Graph
vector features

e OK. What are the features?
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Graph Features (Motifs)

#edges: 6

#targets: 4
#3-cycles: O
#2-paths: 4
Transitivity: ¥a = 0.25
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Graph Features (Motifs)

#edges: 6

#targets: 4
#3-cycles: O
#2-paths: 4
Transitivity: ¥a = 0.25
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Graph Motifs (multiple relations)

(some) joint blue/orange motifs:

#edges {b, 0} 9
#2-cycles {b, o0}: 1
#3-cycles (b-0-0): 1
#3-cycles (b-b-0): O

#2-paths (b-b): 4
#2-paths (b-0): 3
#2-paths (o-b): 4
Transitivity (b-o-b): 25 = 0.67
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ERGM Training

e Estimating the scores for all possible graphs to obtain a probability distribution

is implausible
o Number of possible directed graphs with n nodes: O(exp(n?))

o nnodes, R relations: O(exp(R*n?))
o Estimation begins to be hard at “n=100 for R=1. In WordNet: n = 40K, R =11.
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e Unlike other structured problems, there’s no known dynamic programming
algorithm either
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ERGM Training

e Estimating the scores for all possible graphs to obtain a probability distribution

is implausible

o Number of possible directed graphs with n nodes: O(exp(n?))
o nnodes, R relations: O(exp(R*n?))
o Estimation begins to be hard at “n=100 for R=1. In WordNet: n = 40K, R =11.

e Unlike other structured problems, there’s no known dynamic programming
algorithm either

What can we do?

e Decompose score over dyads (node pairs) in graph
e Draw and score negative sample graphs
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Max-Margin Markov Graph Model (M3GM)

e Sample negative graphs from the “local
neighborhood” of the true WN
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e Sample negative graphs from the “local
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o
o~

25



Max-Margin Markov Graph Model (M3GM)

e Sample negative graphs from the “local
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Max-Margin Markov Graph Model (M3GM)

e Sample negative graphs from the “local
neighborhood” of the true WN
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Max-Margin Markov Graph Model (M3GM)

e Sample negative graphs from the “local
neighborhood” of the true WN

® Loss = Max {O, 1+ score(negative sample)

- score(WN)} ‘ |
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Max-Margin Markov Graph Model (M3GM)

e It's important to choose an appropriate
proposal distribution (source of the negative samples)
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Max-Margin Markov Graph Model (M3GM)

e I[t’'s important to choose an appropriate
proposal distribution (source of the negative samples)

e We want to make things hard for the scorer K?
g ?

Q(V'S, I‘) oC Slocal(<S, I’, V>) 0_\:‘
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Evaluation

e Dataset - WN18RR

o No reciprocal relations (hypernym < hyponym)
o  Still includes symmetric relations

e Metrics - MRR, H@10

® Rule baseline - take symmetric if exists in train
o Used in all models as default for symmetric relations

e Local models
o Synset embeddings - averaged from FastText

e M3GM (re-rank top 100 from local)
o ™ 3000 motifs, Y900 non-zero
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e Dataset - WN18RR

o No reciprocal relations (hypernym < hyponym) S=- (”m o ||)
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e Metrics - MRR, H@10 transk
O O
0
s=1 g * g |l
3
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e Dataset - WN18RR
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o No reciprocal relations (hypernym < hyponym) S=- (”m o ||)
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Relation Prediction (WN18RR)
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Feature Analysis

e Motifs with heavy positive weights:

o Targets of has_part

o  Two-paths hypernym = derivationally_related_form
e Motifs with heavy negative weights:

o Targets of hypernym

o Two-cycles of hypernym

o Target of both has_part and verb_group
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Feature Analysis

european

union

e Motifs with heavy positive weights:

o Targets of has_part -
austria
o  Two-paths hypernym = derivationally_related_form

e Motifs with heavy negative weights:

o Targets of hypernym germany ./
o Two-cycles of hypernym

¥

o Target of both has_part and verb_group

——3 Seenin training data

— —3» Local-only prediction
=« =>» M3GM prediction

=« > Unseen in data 36




Feature Analysis

e Motifs with heavy positive weights:
o Targets of has_part
o  Two-paths hypernym = derivationally_related_form
e Motifs with heavy negative weights:
« garden lettuce
o Targets of hypernym
o  Two-cycles of hypernym ’ -

-—
o Target of both has_part and verb_group

——3 Seenin training data

— —3» Local-only prediction
=« =>» M3GM prediction
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Feature Analysis

e Motifs with heavy positive weights:

o Targets of has_part

o  Two-paths hypernym = derivationally_related_form
e Motifs with heavy negative weights:

o Targets of hypernym

o  Two-cycles of hypernym

o Target of both has_part and verb_group

-0
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Feature Analysis

Motifs with heavy positive weights:

O

(@)

Targets of has_part

Two-paths hypernym = derivationally_related_form

Motifs with heavy negative weights:

(@)

(@)

O

Targets of hypernym
Two-cycles of hypernym
Target of both has_part and verb_group

“Derivations occur in the
abstract parts of the graph”

(bodega / canteen vs. shop)

Hypernym

«<----» Deriv. Related form
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Feature Analysis

e Motifs with heavy positive weights:

o Targets of has_part

o  Two-paths hypernym = derivationally_related_form
e Motifs with heavy negative weights:

o Targets of hypernym

o Two-cycles of hypernym

o Target of both has_part and verb_group

Nouns Verbs
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Future Work

e Multilingual transfers of semantic graphs

ATk

mammal
equine canine
horse zebra wolf fenec
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Future Work

e Multilingual transfers of semantic graphs align embeddings / translate concepts
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Future Work

e Multilingual transfers of semantic graphs align embeddings / translate concepts
e Can we introduce global features to help?
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Conclusion

e Global reasoning of graph features is beneficial for relation prediction
e Works well on top of strong local models

e Applicable to large graphs with dozens of relation types <« M3GM
e Orthogonal of word / synset embedding techniques

e Finds a wide variety of linguistic patterns in semantic graphs
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Thanks

e Computational Linguistics lab
@Georgia Tech

code + bonus WordNet analysis tools:
github.com/yuvalpinter/m3gm

contact: uvp@agatech.edu
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e Bloomberg Data Science PhD.
Fellowship Program
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Thanks

e Computational Linguistics lab
@Georgia Tech

e Bloomberg Data Science PhD.
Fellowship Program

Bloomberg

code + bonus WordNet analysis tools:
github.com/yuvalpinter/m3gm

e YOU!

contact: uvp@agatech.edu
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