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A Flat Representation

Predicates:

(were reported,,)(p1), (deady ) (p2),

(was hitn)(ps),

(in Biloxip)(z), (30 peopley, ) (y),

(in one blocky, of flats)(z), (by a storm surge,, ) (w)

Argument Relations:

ARG(p1, %), ARG(p1,y), ARG(p1,p2),
ARG(p2,y), ARG(p2, 2),

ARG(ps, ), ARG(p3, w),

Figure 1: UDS “flat” representation. Deeper anal-
ysis such as SPR and factuality is not shown.

The non-recursive or “flat” representation can
be viewed as a Parson-style (Parsons, 1990) and
underspecified version of neo-Davidsonianized
RMRS (Copestake, 2007). As shown in Figure 1,
the flat representation is a tuple 7 = (P, A) where
P is a bag of predicates that are all maximally
unary, and A is a bag of arguments represented by
separate binary relations.

Predicate: Predicates in PredPatt representation
are referred as complex predicates: they are open-
class predicates represented in the target language.
Scope and lexical information in the predicates
are left unresolved, yet can be recovered incre-
mentally in deep semantic parsing. From the per-
spective of RMRS, complex predicates are con-
junctions of underspecified elementary predica-
tions (Copestake et al., 2005) where handles are
ignored, but syntax properties from Universal De-
pendencies are retained. For instance, in Fig-
ure 1, the subscript “h” in the predicate “(were
reportedy)” indicates that “reported” is a syntac-
tic head in the predicate.

Argument Relation: The Parson-style flat repre-
sentation makes arguments first-class predications
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ARG(+, -). Using this style allows incremental ad-
dition of arguments, which is useful in shallow
semantics where the arity of open-class predicate
and the argument indexation are underspecified.
They can be recovered when lexicon is available
in deep analysis (Dowty, 1989; Copestake, 2007).

B Linearizing Graph Representation

Figure 2 and figure 3 shows the UDS graph and
linearized representations without deeper analysis
such as SPR and factuality. The procedure of con-
verting figure 2 to Figure 3 is following: Start-
ing at the root node of the dependency tree (i.e.,
“reported;,”), we take an in-order traversal of its
spanning tree. As the tree is expanded, brack-
ets are inserted to denote the beginning or end
of a predicate span, and parentheses are inserted
to denote the beginning or end of an argument
span. The subscript “h” indicates the syntactic
head of each span. Intra-sentential coreference oc-
curs when an instance refers to one of its preced-
ing nodes, where we replace the instance with a
special symbol “e” and add a coreference link be-
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tween “o” and its antecedent.

C Hyperparameters

Encoder: Word embeddings are randomly ini-
tialized 300d vectors sampled from ¢/(—0.1,0.1).
The encoder RNN uses 2-layer bidirectional
LSTMs with hidden state size of 500 and dropout
rate at 0.3. Hidden states are zero initialized. All
other parameters are sampled from ¢/(—0.1,0.1).
Decoder: Word embeddings are initialized by
open-source GloVe vectors (Pennington et al.,
2014) trained on Common Crawl 840B with 300
dimensions. The decoder RNN uses 2-layer
LSTMs with hidden state size of 500 and dropout
rate at 0.3. Hidden states are initialized by the last
left-to-right hidden states of encoder. All other pa-



(were reportedy,)
(in Biloxiy,)

(was hity,)

(by a storm surge; )

(in one blockyof flats)

Figure 2: UDS graph representation.
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Figure 3: UDS Linearized representation.

rameters are sampled from ¢/(—0.1,0.1).
Token Generation: The feed-forward neural net-
work is defined as

FFNN(s¢, ¢;) = tanh(TV, [zj +by) (1)

All transform matrices and bias used in genera-
tion are all sampled from ¢/(—0.1,0.1).
Coref Link: All feed-forward neural networks in
the coreference annotating mechanism are defined
as

FFNN(x) =W3ReLU(W3ReLU(Wix + b1) + b2)
+ b3

where the sizes of W1, W5 and W3 are 1000 x 500,
500 % 500 and 500 x 1 respectively. Dropout at rate
of 0.3 is applied to the output of each layer. All
transform matrices and bias used in the copying
mechanism are all sampled from 2/(—0.1,0.1).
SPR module: The SPR model is a two-layer per-
ceptron:

D é%ﬁij) = WSPRPRCLU(Wshared [7(3/1’% V(yj )])

(2)

where size of Wpareq 1S 2648 X 2648 and sizes

of all Wgpr, are 2648 x 1. All transform matri-

ces used in the SPR model are all sampled from

U(—0.1,0.1).

Factuality module: The Factuality model is a

two-layer perceptron:

D = VaReLU (Viy(yi) + b1) + ba,  (3)

where size of V1 and V2 are 1324 x 1324 and
1324 x 1. All transform matrices used in the fac-
tuality model are all sampled from ¢/(—0.1,0.1).

Learning: Adam optimizer (Kingma and Ba,
2014) with mini-batch gradient is used for opti-
mization. The batch size is 64.

D In-domain Test

Table 1 reports the experimental results on the test
set. Results on the in-domain test set are similar
and shown in the appendix. In Table 1, S met-
ric measures the similarity between predicted and
reference graph representations. Based on the op-
timal variable mapping provided by the S met-
ric, we are able to evaluate our model and the
variants in different aspects: BLEUnsT measures
the BLEU score of all matched instance edges;
MAEgpr measures the mean absolute error of SPR
property scores of all matched argument edges;
and MAEgscT measures the mean absolute error
of factuality scores of all matched attribute edges.



S metric

BLEUnsT | MAEspr | MAEEAcT
Prec. Rec. F1
Pipeline 3542 2353 28.27 14.80 N/A N/A
Variant (a) | 37.46 2591 30.63 15.67 0.45 0.77
Variant (b) | 41.27 26.41 32.21 16.89 0.44 0.79
Variant (¢c) | 40.27 2640 31.89 16.60 0.43 0.74
Our model | 44.17 27.04 33.55 17.90 0.43 0.78

Table 1: Evaluation of results on the in-domain test set.
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