A Feature templates for realization

§2.2 assigns a probability distribution to each or-
dering 7 of node a and its child nodes. m; rep-
resents the i node in this ordering. Recall that
equation (1) scores each pair (m;,7;) for which
i < j, using a feature vector f(m, 1, j).

To construct the feature vector f(m, i, j), we use
the following subset of the feature templates of
Wang and Eisner (2016). Borrowing their nota-
tion, we write t; for the POS tag of m;, and we
write r; for the dependency relation of 7; to its par-
ent, or r; = head in the special case of m; = a.

e L.t;.r;, provided that r; = head. For ex-
ample, L.ADJ.amod will fire on each ad-
jectival modifier with POS ADJ to the left of
the head.

e L.t;.r;.t;.7;, provided that r; # head
and r; # head. This feature detects the rel-
ative order of two siblings.

o d.tj.r;.t;.rj, where d is 1 (left), m (middle),
or r (right) according to whether the head po-
sition h satisfies ¢ < j < h, i < h < j, or
h < i < j. For example, 1 .nsubj.dobj
will fire on SOV clauses. This is a special-
ization of the previous feature (in that it also
takes the head position into account), and is
similarly skipped if ¢ = h or j = h.

e A.t;.r;.tj.rj, provided that j = ¢ + 1.
These bigram features detect two adjacent
nodes. For this feature, we extend the sum-
mation in equation (1) to allow 0 <17 < j <
ng + 1, taking g = ro = BOS (“beginning of
sequence”) and t,,4+1 = 741 = EOS (“end of
sequence”), as in §2.4.2.

These templates are instantiated with all tags
and relations that appear in the source treebank. In
contrast to Wang and Eisner (2016), the ordering
model that we tune on the source treebank is never
applied to any other treebank. Thus, there is no
need to include tags or relations that do not appear
in the source treebank, nor do we need the back-
off features of Wang and Eisner (2016). Also, for
speed, we exclude the “high-order” features from
that paper.

B Pseudocode

Algorithm 1 is the algorithm from §3.1 for com-
puting expected POS bigram counts. It calls Al-
gorithm 2.

—— Original 4 \
=== Synthetic

~~~~~~

T T
50 60

.7‘0 ar 8‘0 9‘0 160
° cs ~--e by
%o %e
*5 deen
- @ €es
e fi o et
® - -w- - got o fr
° e grg_proiel
. < RLE=ELTgre "
e hi it
© @ e lajitt el
° o +ta_proiel
L[] --- nl
® - no
- - pt
Figure 4: Parsability of 20 real treebanks vs. their

many synthetic re-realizations (cf. Wang and Eisner,
2016, Figure 2).

Algorithm 2 is the algorithm from §3.2 for
efficiently computing the expected node bigram
counts p, (i, 7). The key is that UPDATE is called
when a bigram is about to be destroyed; it incre-
ments the bigram’s unnormalized probability by
the cumulative change to the running total Z(a)
since that bigram was last created. Each enumer-
ated permutation swaps two adjacent nodes in the
previous permutation. This destroys 3 bigrams, so
it first calls UPDATE on those (lines 15-17).

C Hyperparameter setting

For tuning hyperparameters in §5.1, we performed
a grid search that evaluated all (a1, ag, 3) triples
in {0.0,0.2,...,1}3. The optimal setting was
(a1, a0,8) = (0.2,1,0.2).

For multi-source transfer (Appendix E), we
reused the same synthetic treebanks B’ that we
generated for single-source transfer, and tuned
only the augmentation ratio g. the optimal setting
was 0.2 for all 3 approaches.

D Parsability

For reasons explained in §5.2, we evaluated the
parsability of our “made to order” synthetic lan-
guages, when the parser was given only POS se-
quences as input. For each synthetic treebank B’,
we trained the Yara parser on a training portion
and evaluated its UAS on a development portion.
In fact, the synthetic treebanks were slightly more
parsable than the originals (mean UAS of 74.96 vs.
73.61), though the improvement was far from sig-
nificant under an unpaired permutation test (p =
0.48). By contrast, Wang and Eisner (2016) pro-
duced synthetic treebanks that were significantly
less parsable. We observed some regression to the
mean: highly parsable treebanks usually became
less parsable when permuted, and vice-versa.



Algorithm 1 A recursive routine (§3.1) for computing the expected bigram counts ¢, from pg. Croot 1S
the ¢, function needed by §2.4.

Input: A node a in the dependency tree; current model parameters 6
Output: Sparse map ¢, where ¢, [st] gives the expected count ¢, (st) for each POS bigram st
1: procedure ECOUNTNODE(a, 0)

2: ao = BOS; (a1, ...,an—1) = children(a); an = head(a); an+1 = EOS > d is the node sequence defined in §3.1
3: ca 1} > map we’re constructing, initialized to empty; undefined count c,|[st] can be interpreted as 0
4: fori =1ton —1do
5: Ca; < ECOUNTNODE(a;) > recursively compute expected counts for any subtrees rooted at children(a)
6: Ca, < {BOSh+— 1, hEOS — 1} where h = POS(head(a)) > serves as the base case of the recursive routine
7: Cay ¢+ {BOSEOS+— 1} > dummy boundary nodes
8: Capy1 < {BOSEOS — 1}
9: Pa < LAZYCOMPUTE(d, 0) > call Algorithm 2 for node bigram probs p,, (as defined above equation (5))
10: fori =1 tondo
11: for st € keys(cq,) such that s # BOS, t # EOS do
12: Ca[st] += ca; [st] > increase cq[st] by ci™"[st] using equation (5)
13: for i = 0 to n do
14: for j = 1 ton + 1 such that j # i do
15: for s, such that s EOS € keys(cq,) and BOSt € keys(ca;) do
16: Calst] += pali, j] - ca;[s EOS] - ca; [BOS 1] > increase cq[st] by ¢i'*[st] using equation (5)
17: return c,

Algorithm 2 Computing Node Bigram Probabilities

Input: Sequence of nodes @ = (a1, ..., an); current model parameters 6

Output: Array p where pli, j] = marginal probability of node bigram a;a; forall0 <i <n+1,0<j <n+1withj #1
1: procedure LAZYCOMPUTE(d, )

p <0 > initialize all marginal bigram probabilities to zero
t 0 > number of permutations considered so far
ZM 0 >Z® s always total unnormalized probability of first t permutations
0; +tfor0<i<n+1 > 0; is the latest permutation at which bigram (;, w;11) was not yet adjacent
T <+ (1,2,...,n) > initialize 7 to be identity permutation, (Vi)m; = i

procedure UPDATE(%)
> This procedure updates the unnormalized marginal probability of the bigram (7;, ;41 ), which is about to change

plmi, misa] += 2@ — 7D > total partial sum of Z(a) since (m;, mi+1) acquired its current value
0; <+t > current time is last time at which (s, wi11) will have its current value (until later)
w0 - Zl<i<j<n f(m,i,7) > unnormalized log-probability of m from equation (1)
t<—t+1; ZW 7= 4 exp w > add the first permutation’s unnormalized prob into Z
> SJT iterates over a sequence of n! — 1 swaps, to get the remaining permutations
for k£ in SJT(n) do > here 1 < k < m, meaning to swap (7, Tk+1)
UPDATE(k — 1) > increment prob of current bigram (w,_1, Tk ) before that bigram goes away
UPDATE(k) > similarly for (Tg, Tr+1)
UPDATE(k + 1) > similarly for (Tg+1, Th+2)

SWAP(7k, Th+1)
> Update w from line 11 using only the difference of feature vectors, which is sparse and computable in O(n) time

R m m = s
S RN s = A A

wew+6-3 o, (£, 5) — £(mow, 4, 7)) > where o is the pre-swap 0 and is similar to
21: tt+1;20 « 20 4 expw > add the new permutation’s unnormalized prob into Z (same as line 12)
22: for i = 1ton do > count all bigrams in final permutation as we move on from it
23: UPDATE(%)
24: for : = 0 to n do
25: for j = 1 to n + 1 such that j # i do
26: pli, j] + pz[l'(g] > normalize the probabilities

27: return the array p




@®ar Wby @cs @da Ade en Mes et ®fi Afr @got Wgrc @grc_proiel

0.5

o
>

hi Ait @laitt Wlaproiel @n ®no Apt
4

v A

3

5 02 \\ T NN
NN R

) §§§§§§\:§;Nt

Q
Target Treebanks o

Figure 5: Divergences between 376 pairs of development treebanks. This is a different presentation of Figure 6
in which the source-target pairs are grouped into columns. Each column represents a target treebank, and each
line segment within that column shows the divergence equation (4) from variants of a different source treebank.
The two points on that segment (from left to right) represent the original source treebank and its “made ot order”
permutation. We use solid markers and purple lines if the transfer is within-family (source and target treebank from
the same language family), and hollow and olive for cross-family transfer. The black segment in each column is

the mean of the others.

E Multi-source transfer

While the main paper considers single-source
transfer parsers, we are also interested in whether
multi-source transfer parsers can be improved by
augmenting the source treebanks with synthetic
(permuted) versions.

In each of these experiments, we trained the
delexicalized parser by sampling 50000 sentences
with replacement from one or more source tree-
banks, and then tested it on the target treebank. We
considered the following methods for sampling a
sentence:

Single-source selection (Rosa and Zabokrtsky,
2015a; Wang and Eisner, 2016): Sample
all sentences uniformly from a single source
treebank, namely the one whose trigram POS
language model has the highest likelihood on
the unparsed corpus of the target language.
This method considers multiple sources only
to select one.

Equal mixture : Select one of the source tree-
banks uniformly at random, then sample a
sentence uniformly from that treebank. To
succeed on this mixture of source treebanks,
this source parser must, in effect, analyze the

For speed, we restricted the experiment of Figure 9 to
choose 48 of the 376 pairs. The source treebanks were en,
no, de, es, fr, pt, hi, it, ar. The target treebanks were fr, hi,
de, ar, pt, en. This covers both in-family transfer and cross-
family transfer. By excluding the cases where source = target,
we got 9 x 6 — 6 = 48 pairs.

input POS sequence to determine what sort of
parse tree is called for in the input language,
and we hope that this will also work on the
target language.'®

Unequal mixture : As above, but the selection
probability of each source treebank is pro-
portional to its KL% , similarity to the tar-

cpos

get corpus Rosa and Zabokrtsky (2015a),"?
which is again determined from the POS tri-
grams of the two corpora.

In any of these three methods, we can use either
the collection of original source treebanks (g = 0),
or the collection of permuted versions that have
been permuted to resemble our target language
(g = 1). These two collections are the same size.
For each sentence that we sample, we use a coin
with weight g € [0, 1] to decide which collection
to use. See Appendix C for the value of the hy-
perparameter g. Notice that the single-source se-
lection method now really becomes double-source
selection—we separately select one real and one

18This is inspired by McDonald et al. (2011)’s method of
concatenating the source treebanks. However, our version
does not give more weight to treebanks with more sentences
(although it does effectively give more weight to treebanks
whose sentences are longer).

YIn contrast, (Rosa and Zabokrtsk)’/, 2015b) used these
probabilities to interpolate among separately trained source
parsers (specifically, interpolating the linear scoring functions
of trained instances of MSTParser). We use them to mix
treebanks before training a single parser (an instance of Yara
parser).



®ar Ade ofi # grc_proiel W la_proiel
= bg en A fr hi 4nl
0.54®cs mes eogot ait * no //
[ee) eda eet mgrc e latt A pt
— / R
M ; Qo &
© 0% 55 \0
< 0.3 o098 $5%¢
g o ‘M\?AO &o ©
= VY o
© 021 hdi
= ey 2
) oy e
5 oG ”%w >
= 0.1 .
g o B
A J‘»{%&
0.04 4
0'0 Q"\/ Qr‘b 0"5 Q‘b‘ Q(?
Original Treebank: 0.22
Figure 6: This graph plots the z-axes from the two

graphs in Figure 1 against each other. We see that for
almost every source-target pair (330/376 = 96.01% of
the pairs), the SGD optimizer succeeded in construct-
ing a permuted source treebank B’ with lower diver-
gence to the target than the original source treebank B.
The diagonal line y = z is also shown for readability.
The number on each axis is the mean value.

| Selection | Mix= | Mix#
64.37 62.31 | 64.77
64.55 62.77 | 65.00

Original
+Synthetic

Table 1: Cross-validation results on UAS using multi-
source transfer. “Original” uses the original treebanks
from UD (¢ = 0), and “+Synthetic” augments with
synthetic languages (allowing g > 0). Within each col-
umn, we highlight the better result, as well as the other
if it is not significantly worse (paired permutation test
by language, p < 0.05).

synthetic treebank. Similarly, in the unequal mix-
ture method, we have two sets of mixture weights,
one for each treebank collection.

The data split is shown in Table 2. In this
setting, we tuned the hyperparameters a bit dif-
ferently than in §5.1, using 5-fold cross valida-
tion with the 5-fold split shown in Table 2. That
is, to evaluate a given hyperparameter setting, we
evaluated the unlabeled attachment score (UAS)
on each group of 4 treebanks when transferring
parsers from the other 16.

Both during hyperparameter tuning and during
testing, we excluded any additional treebanks of
the target language from the collection of sources,
just as in footnotes 12—13.

90

80 ‘ All (376) ‘ in-family (46) ‘ cross-family (330) /
(@] Original 51.92 63.90 50.24 Y
(@)) Synthetic 52.92 62.85 51.53 . ‘Diiﬂ*"pﬂ
. at e,
o 70 A . &;;cg@»g
lg] 28 gu‘:
.. o )
~ 60 1 %
o o
3
50 1
O
) L
ﬁ 40 1 o2
opn %0
O [
. o o
S 30 e
() ear eet At
4,::.‘_: mbg efi ® la_itt
o 20 A ®cs Afr u la_proiel
> o * da e got ¢ nl
wn 104 y Ade mgrc * no
/ en & grc_proiel A pt
mes hi

10 20 30 40 SIO 6|0 7|0 80 90
Original Treebank: 51.92

Figure 7: Unlabeled attachment scores (UAS) on 376
language pairs within the training languages. Each
marker represents one pair, whose z-axis is the UAS
on the target language using the original treebank of
the source language, and the y-axis is the UAS using
the synthetic treebank permuted from the original tree-
bank. The table in the upper left gives summary results;
the number in each column header gives the number of
points summarized. For each column, we boldface the
better result, as well as the other if it is not significantly
worse (paired permutation test, p < 0.01).

Train Test
bg " en ' de; pt; hi la, hr, ga, he, hu,
es | la,proiel‘ fr , no cs fa, ta, cu, el, ro,
grc,proiel‘ la_itt | it , et gre sl, ja_ktc, sv,
ar _fi _got nl da fi_ftb, id, eu, pl

Table 2: Data split of the 37 treebanks (33 languages)
from Wang and Eisner (2016, 2017). The dashed lines

in “Train” separate the 5 folds.

As shown in Table 1, the improvement from
adding the synthetic treebanks (¢ > 0 compared
to g = 0) varies for different methods. Specifi-
cally, the synthetic treebanks do not significantly
aid single-source selection, which is reasonable
because the selection criteria is more likely to pick
a source treebank that belongs to the same lan-
guage family as the target language,”’ and as we
have seen, these cases are not effectively improved
by permutation (§5.2). They do significantly im-
prove the mixing methods, because source tree-
banks from other families contribute to the parsing
model, and these are improved by our approach.

®Tn the g = 0 experiment, 12/20 target languages selected
their single source from the same family.



90

90

v

| Al (48) | in-family (10) | cross-family (38)
19.39 71.00 371

80

Origmal

formed)
random)

70 A

50.72
52.72
54.49

69.94
62.36
67.19

15.66
50.18

All (376) | in-family (46) | cross-family (330)
Original 51.92 63.90 50.24 /
Synthetic 59.45 66.14 58.51 74
1o 807 P
< gy
Q) 70 A R
Lo
A4 60
=i
d
Q 50 o
[¢] o
@ o
£ 40+
g
4+ 30
() ear eet At
fi mbg off ® la_itt
e 20 A ®cs afr ® la_proiel
> e da e got @nl
wn Ade mgrc ® no
10 A .
en @ grc_proiel A pt
" es hi
10 20 30 40 50 60 70 80

60 -
B R

2 LR 2K 2

50 A
40
301

201

Synthetic Treebank: 54.49

104

® ar
u de

‘ 51.15 A
o
z w

o

¢ en
e fr

-

A hi
pt

10 20 30 40 50 60

70

80 90

Original Treebank: 51.92

Figure 8: UAS on 376 language pairs within the train-
ing languages. The design is similar to Figure 7, but the
synthetic treebanks are generated using an oracle—the
actual realization model of the target language.

F Full result tables

We show breakdown results for multi-source
transfer in Table 3 and for single-source transfer
in Table 4.

Original Treebank: 49.39

Figure 9: UAS on 48 of the language pairs within the
development languages.!” The design is similar to Fig-
ure 7, but we optimize divergence more aggressively by
selecting the best of 6 optimization runs for each pair
(informed initialization plus 5 random restarts). In 36
of 48 cases, the best run used a random restart. The av-
erage = and y values are given in the first and last rows
of the table, with the intermediate rows showing the re-
sults if we had used only informed initialization or only
random restarts. Each column boldfaces the best re-
sult as well as all others that are not significantly worse
(paired permutation test, p < 0.01).

Selection Mix= Mix##
Target orig. 4syn. | orig. +syn. | orig. +syn.
ar 48.08 51.83 | 47.5 48.08 | 51.69 51.62
bg 80.66 80.25 | 76.97 77.77 | 82.06 81.87
cs 70.67 69.52 | 67.33 67.39 | 66.59 67.28
da 69.86 69.94 | 70.08 69.83 | 70.47 70.87
de 64.27 63.65| 64.97 65.44 | 65.66 65.51
en 64.00 63.91 | 62.57 63.13 | 63.30 63.57
es 77.74 77.85|75.58 75.26 | 79.14 79.16
et 76.00 75.77 | 67.11 69.26 | 75.94 76.11
fi 50.38 50.47 | 51.19 51.21 | 51.56 51.56
fr 80.51 80.57 | 77.89 77.96 | 80.66 80.83
got 68.20 67.58 | 62.18 62.75 | 68.23 67.93
gre 4249 42.56 | 48.94 49.19 | 44.07 44.22
grc_proiel | 61.28 61.52 | 56.99 57.19 | 61.60 61.4
hi 41.39 41.60 | 28.59 31.42 |35.06 37.62
it 82.01 81.88|79.62 79.62 | 819 81.94
la_itt 48.61 50.00 | 50.84 51.07 | 51.89 52.06
la_proiel | 54.02 54.62|52.14 52.51 | 55.13 55.23
nl 59.27 59.08 | 59.94 60.81 | 61.16 61.46
no 70.33 70.38 | 69.37 69.39 | 71.54 71.53
pt 77.69 78.07 | 76.34 76.22 | 77.68 78.19
Table 3: Breakdown results from Table 1. For each

language and method, we boldface the better result, as
well as the other if it is not significantly worse (paired
permutation test by sentence, p < 0.05). Notice that
for the Mix= method, augmenting with synthetic per-
muted languages always yields a boldfaced result.



bg es gre_proiel ar en la_proiel la.itt fi de fr it got pt no et nl hi cs gre da

bg - 69.66 60.85 4534 71.65 63.05 58.83 6848 6834 70.04 7511 66.13 70.18 73.65 62.50 69.67 36.11 7581 64.64 75.33
es 70.99 - 60.32 51.54 67.74 58.18 55.05 56.21 63.34 7642 76.64 6123 7049 70.50 45.07 67.23 31.25 69.76 50.81 68.55
gre_proiel | 54.02  49.28 - 39.27 50.23 5042 43.89 4523 49.77 47.06 4893 59.58 49.44 51.04 43.81 51.20 37.80 53.44 - 51.50
ar 46.58 44.78 45.63 - 3400 48.46 49.82 32.08 42.81 4648 4583 48.75 4525 39.50 39.78 44.04 14.68 50.18 49.26 44.33

en 57.78 57.40 48.69 34.49 - 4734 4997 5342 60.52 59.00 56.41 48.26 48.56 61.62 48.68 51.42 39.77 5811 50.25 58.15
la_proiel | 50.87 45.14 5126  34.09 44.34 - - 44.88 43.80 41.99 43.58 52.84 4478 4550 43.01 44.51 33.37 49.65 47.15 44.59
laitt 4557 46.18  44.19 36.78 43.20 - - 44.08 4344 4355 4478 4521 45.62 4534 3995 4271 29.03 4837 46.54 42.10
fi 47.00 46.78 4502 2775 49.15 4286 3562 - 45.70 44.38 4501 4532 3930 5344 46.12 4518 40.81 4838 47.07 49.99

de 61.44 61.05 55.77 38.72 6451 47.66 49.20 50.03 - 58.11 59.12 51.00 56.68 59.71 47.79 61.03 4575 63.13 49.22 5845

fr 73.57 7851 62.09  54.09 69.71 5754 5697 57.46 67.28 - 76.56 6237 70.34 73.00 41.96 69.62 33.36 72.12 53.56 72.35

it 75.65 79.97 62.53 56.19 71.14 61.09 62.34 5553 66.24 78.03 - 6198 71.74 7548 4591 7045 34.09 73.70 53.53 73.57
got 61.33 53.35 65.16 41.92 5342 62.67 47.83 52.03 5171 47.94 50.89 - 52.85 5520 52.51 52.85 3580 57.17 56.76 54.74

pt 71.02 76.34 61.99 53.17 69.09 5892 56.57 52.20 64.89 7474 76.55 61.82 - 7026 37.72 69.62 3431 71.19 52.10 71.04
no 66.77 62.74 55.85 39.53 6599 50.82 5471 60.67 59.33 62.97 6591 5497 55.14 - 47.73 5586 35.14 64.72 5379 67.88
et 66.02 60.89 67.57 4148 59.79 62.84 5550 74.84 5522 46.78 57.47 69.03 53.22 67.69 - 55.84 5514 64.18 69.80 70.47
nl 52.60 56.46 5044 3891 5529 47.57 4793 4524 59.38 52.89 55.09 4942 54.53 50.52 3841 - 40.81 5330 4496 57.79
hi 27.02 2445 37.04 18.89 30.81 37.88 3496 48.18 40.39 22.38 2531 38.82 28.07 27.31 4842 29.74 - 27.74 38.60 24.50
cs 64.33  64.21 53.48 36.69 53.65 5541 54.00 58.09 58.78 60.03 65.64 5542 60.58 60.11 50.16 57.66 33.99 - 55.16 60.16

gre 49.11 43.06 - 3146 4281 4570 40.05 43.53 44.07 41.10 4331 4892 44.63 46.76 45.07 46.96 36.00 44.27 - 47.14
da 65.72  64.69 5442 3946 6299 5193 5339 57.54 59.87 64.33 65.58 53.74 56.70 68.43 49.03 59.39 3439 64.65 51.76 -
cu 64.84 55.15 64.42 4555 56.87 65.82 49.97 54.62 52.16 50.95 54.11 6834 5578 59.22 5491 5412 33.59 60.19 60.35 58.69
el 62.69 56.82 58.68 45.80 59.49 5034 57.11 4852 6131 5895 57.99 57.61 59.92 60.82 4197 56.08 39.93 6470 58.24 57.97
eu 48.68 40.02 45.31 3279 44.84 4614  43.73 41.29 4324 34.01 4453 42.07 43.28 43.29 48.12 47.11 48.03 47.60 43.22 46.83
fa 50.33 48.78 4243 4596 38.08 48.37 49.03 3940 4534 48.73 48.11 5091 47.47 4097 3837 4330 28.86 54.08 49.82 44.22

fi_ftb 49.76 47.07 51.10 31.12 50.56 46.65 37.79 - 51.57 42.72 49.08 48.42 47.99 54.20 48.06 48.54 46.93 50.03 4829 46.35
ga 5521 52.82 5329  55.77 51.58 49.57 51.01 46.43 5290 55.08 5533 53.00 53.96 56.35 43.84 50.51 29.18 61.18 50.65 58.77
he 59.80 57.91 61.15 55.17 5293 5343 5649 50.67 53.00 52.12 56.90 61.75 5722 56.07 42.57 53.60 28.62 62.36 5546 53.86
hr 64.23  62.44 5219  37.70 5599 5534 5435 5848 57.13 57.74 64.86 55.13 5731 53.39 4844 5528 3335 69.26 48.08 60.81
hu 56.65 50.57 53.06  28.23 54.81 4740 43.08 53.83 57.33 49.67 50.87 48.79 51.16 56.98 50.03 56.10 53.50 53.15 54.38 54.74
id 62.73 58.01 49.84  48.08 3791 5221 43.00 49.40 41.87 5328 62.00 5295 56.84 50.61 36.96 47.48 22.80 62.00 44.87 53.85

jaktc 20.87 18.85 35.94 14.36 28.50 3755 2839 5045 31.34 17.89 17.86 30.82 20.52 29.15 44.33 16.67 62.09 25.05 37.95 28.65
la 46.83 39.91 43.68  30.04 40.52 - - 4391 3881 36.32 38.62 46.01 41.86 42.55 42.06 40.97 35.62 4328 4564 43.49
pl 6575 64.74 5320 5327 5712 5779 5831 57.59 58.78 60.78 64.39 5491 63.64 61.70 6045 56.73 37.49 69.97 64.60 63.49
o 67.44 064.81 5510  51.82 59.18 5332 56.65 5498 57.10 62.13 6579 5493 57.00 60.97 4647 5591 28.52 6548 5533 64.64
sl 70.37 69.47 56.33 39.64 63.15 5611 5749 63.81 67.06 68.35 69.23 5737 57.92 66.13 54.58 60.26 38.36 76.41 60.16 66.34
sV 68.72  66.99 58.19  39.60 69.88 5546 57.12 64.25 65.37 65.67 69.35 58.62 61.06 7533 53.59 64.17 39.60 68.41 59.44 7322
ta 40.48 27.35 39.34 17.37 4211 40.89 37.11 4232 3948 28.80 30.86 3291 30.47 39.92 4493 3190 57.59 33.10 33.79 31.21

Table 4: UAS scores on single-source transfer results using the synthetic languages, where the columns represent
source treebanks and the rows represent target treebanks. The upper half of the table is the 5-fold cross-validation
result used for generating the y-axis of Figure 7. The lower half is the final test result used for the y-axis of
Figure 3. For each pair, we boldface the results that are not significantly worse (paired permutation test by sentence,
p < 0.05) than using the original treebanks.



