
A Feature templates for realization

§2.2 assigns a probability distribution to each or-
dering π of node a and its child nodes. πi rep-
resents the ith node in this ordering. Recall that
equation (1) scores each pair (πi, πj) for which
i < j, using a feature vector f(π, i, j).

To construct the feature vector f(π, i, j), we use
the following subset of the feature templates of
Wang and Eisner (2016). Borrowing their nota-
tion, we write ti for the POS tag of πi, and we
write ri for the dependency relation of πi to its par-
ent, or ri = head in the special case of πi = a.

• L.ti.ri, provided that rj = head. For ex-
ample, L.ADJ.amod will fire on each ad-
jectival modifier with POS ADJ to the left of
the head.

• L.ti.ri.tj.rj , provided that ri 6= head
and rj 6= head. This feature detects the rel-
ative order of two siblings.

• d.ti.ri.tj .rj , where d is l (left), m (middle),
or r (right) according to whether the head po-
sition h satisfies i < j < h, i < h < j, or
h < i < j. For example, l.nsubj.dobj
will fire on SOV clauses. This is a special-
ization of the previous feature (in that it also
takes the head position into account), and is
similarly skipped if i = h or j = h.

• A.ti.ri.tj.rj , provided that j = i + 1.
These bigram features detect two adjacent
nodes. For this feature, we extend the sum-
mation in equation (1) to allow 0 ≤ i < j ≤
na+1, taking t0 = r0 = BOS (“beginning of
sequence”) and tn+1 = rn+1 = EOS (“end of
sequence”), as in §2.4.2.

These templates are instantiated with all tags
and relations that appear in the source treebank. In
contrast to Wang and Eisner (2016), the ordering
model that we tune on the source treebank is never
applied to any other treebank. Thus, there is no
need to include tags or relations that do not appear
in the source treebank, nor do we need the back-
off features of Wang and Eisner (2016). Also, for
speed, we exclude the “high-order” features from
that paper.

B Pseudocode

Algorithm 1 is the algorithm from §3.1 for com-
puting expected POS bigram counts. It calls Al-
gorithm 2.

50 60 70 80 90 100ar bgcs dadeen es etfi frgotgrc_proielgrc hi itla_ittla_proiel nl nopt

Original
Synthetic

Figure 4: Parsability of 20 real treebanks vs. their
many synthetic re-realizations (cf. Wang and Eisner,
2016, Figure 2).

Algorithm 2 is the algorithm from §3.2 for
efficiently computing the expected node bigram
counts pa(i, j). The key is that UPDATE is called
when a bigram is about to be destroyed; it incre-
ments the bigram’s unnormalized probability by
the cumulative change to the running total Z(a)
since that bigram was last created. Each enumer-
ated permutation swaps two adjacent nodes in the
previous permutation. This destroys 3 bigrams, so
it first calls UPDATE on those (lines 15–17).

C Hyperparameter setting

For tuning hyperparameters in §5.1, we performed
a grid search that evaluated all (α1, α2, β) triples
in {0.0, 0.2, . . . , 1}3. The optimal setting was
(α1, α2, β) = (0.2, 1, 0.2).

For multi-source transfer (Appendix E), we
reused the same synthetic treebanks B′ that we
generated for single-source transfer, and tuned
only the augmentation ratio g. the optimal setting
was 0.2 for all 3 approaches.

D Parsability

For reasons explained in §5.2, we evaluated the
parsability of our “made to order” synthetic lan-
guages, when the parser was given only POS se-
quences as input. For each synthetic treebank B′,
we trained the Yara parser on a training portion
and evaluated its UAS on a development portion.
In fact, the synthetic treebanks were slightly more
parsable than the originals (mean UAS of 74.96 vs.
73.61), though the improvement was far from sig-
nificant under an unpaired permutation test (p =
0.48). By contrast, Wang and Eisner (2016) pro-
duced synthetic treebanks that were significantly
less parsable. We observed some regression to the
mean: highly parsable treebanks usually became
less parsable when permuted, and vice-versa.



Algorithm 1 A recursive routine (§3.1) for computing the expected bigram counts ca from pθ. croot is
the cp function needed by §2.4.
Input: A node a in the dependency tree; current model parameters θ
Output: Sparse map ca where ca[st] gives the expected count ca(st) for each POS bigram st
1: procedure ECOUNTNODE(a,θ)
2: a0 = BOS; (a1, . . . , an−1) = children(a); an = head(a); an+1 = EOS . ~a is the node sequence defined in §3.1
3: ca ← {} . map we’re constructing, initialized to empty; undefined count ca[st] can be interpreted as 0
4: for i = 1 to n− 1 do
5: cai ← ECOUNTNODE(ai) . recursively compute expected counts for any subtrees rooted at children(a)
6: can ← {BOS h 7→ 1, h EOS 7→ 1} where h = POS(head(a)) . serves as the base case of the recursive routine
7: ca0 ← {BOS EOS 7→ 1} . dummy boundary nodes
8: can+1 ← {BOS EOS 7→ 1}
9: pa ← LAZYCOMPUTE(~a,θ) . call Algorithm 2 for node bigram probs pa (as defined above equation (5))

10: for i = 1 to n do
11: for st ∈ keys(cai) such that s 6= BOS, t 6= EOS do
12: ca[st] += cai [st] . increase ca[st] by cwithin

a [st] using equation (5)
13: for i = 0 to n do
14: for j = 1 to n+ 1 such that j 6= i do
15: for s, t such that s EOS ∈ keys(cai) and BOS t ∈ keys(caj ) do
16: ca[st] += pa[i, j] · cai [s EOS] · caj [BOS t] . increase ca[st] by cacross

a [st] using equation (5)
17: return ca

Algorithm 2 Computing Node Bigram Probabilities
Input: Sequence of nodes ~a = (a1, . . . , an); current model parameters θ
Output: Array p where p[i, j] = marginal probability of node bigram aiaj for all 0 ≤ i < n+ 1, 0 < j ≤ n+ 1 with j 6= i
1: procedure LAZYCOMPUTE(~a,θ)
2: p ← 0 . initialize all marginal bigram probabilities to zero
3: t ← 0 . number of permutations considered so far
4: Z(t) ← 0 . Z(t) is always total unnormalized probability of first t permutations
5: oi ← t for 0 ≤ i < n+ 1 . oi is the latest permutation at which bigram (πi, πi+1) was not yet adjacent
6: π ← (1, 2, . . . , n) . initialize π to be identity permutation, (∀i)πi = i
7: procedure UPDATE(i)
8: . This procedure updates the unnormalized marginal probability of the bigram (πi, πi+1), which is about to change
9: p[πi, πi+1] += Z(t) − Z(oi) . total partial sum of Z(a) since (πi, πi+1) acquired its current value

10: oi ← t . current time is last time at which (πi, πi+1) will have its current value (until later)
11: w ← θ ·

∑
1≤i<j≤n f(π, i, j) . unnormalized log-probability of π from equation (1)

12: t← t+ 1;Z(t) ← Z(t−1) + expw . add the first permutation’s unnormalized prob into Z
13: . SJT iterates over a sequence of n!− 1 swaps, to get the remaining permutations
14: for k in SJT(n) do . here 1 ≤ k < n, meaning to swap (πk, πk+1)
15: UPDATE(k − 1) . increment prob of current bigram (πk−1, πk) before that bigram goes away
16: UPDATE(k) . similarly for (πk, πk+1)
17: UPDATE(k + 1) . similarly for (πk+1, πk+2)
18: SWAP(πk, πk+1)
19: . Update w from line 11 using only the difference of feature vectors, which is sparse and computable in O(n) time
20: w ← w + θ ·

∑
1≤i<j≤n (f(π, i, j)− f(πold, i, j)) . where πold is the pre-swap θ and is similar to θ

21: t← t+ 1;Z(t) ← Z(t−1) + expw . add the new permutation’s unnormalized prob into Z (same as line 12)
22: for i = 1 to n do . count all bigrams in final permutation as we move on from it
23: UPDATE(i)
24: for i = 0 to n do
25: for j = 1 to n+ 1 such that j 6= i do
26: p[i, j]← p[i,j]

Z(t) . normalize the probabilities

27: return the array p



ar bg cs da de en es et fi fr got grc

grc_p
roiel hi it

la_itt
la_proiel nl no pt

Target Treebanks

0.0

0.1

0.2

0.3

0.4

0.5
D

iv
er

ge
nc

e
ar bg cs da de en es et fi fr got grc grc_proiel hi it la_itt la_proiel nl no pt

Figure 5: Divergences between 376 pairs of development treebanks. This is a different presentation of Figure 6
in which the source-target pairs are grouped into columns. Each column represents a target treebank, and each
line segment within that column shows the divergence equation (4) from variants of a different source treebank.
The two points on that segment (from left to right) represent the original source treebank and its “made ot order”
permutation. We use solid markers and purple lines if the transfer is within-family (source and target treebank from
the same language family), and hollow and olive for cross-family transfer. The black segment in each column is
the mean of the others.

E Multi-source transfer

While the main paper considers single-source
transfer parsers, we are also interested in whether
multi-source transfer parsers can be improved by
augmenting the source treebanks with synthetic
(permuted) versions.

In each of these experiments, we trained the
delexicalized parser by sampling 50000 sentences
with replacement from one or more source tree-
banks, and then tested it on the target treebank. We
considered the following methods for sampling a
sentence:

Single-source selection (Rosa and Žabokrtský,
2015a; Wang and Eisner, 2016): Sample
all sentences uniformly from a single source
treebank, namely the one whose trigram POS
language model has the highest likelihood on
the unparsed corpus of the target language.
This method considers multiple sources only
to select one.

Equal mixture : Select one of the source tree-
banks uniformly at random, then sample a
sentence uniformly from that treebank. To
succeed on this mixture of source treebanks,
this source parser must, in effect, analyze the

17For speed, we restricted the experiment of Figure 9 to
choose 48 of the 376 pairs. The source treebanks were en,
no, de, es, fr, pt, hi, it, ar. The target treebanks were fr, hi,
de, ar, pt, en. This covers both in-family transfer and cross-
family transfer. By excluding the cases where source = target,
we got 9 ∗ 6− 6 = 48 pairs.

input POS sequence to determine what sort of
parse tree is called for in the input language,
and we hope that this will also work on the
target language.18

Unequal mixture : As above, but the selection
probability of each source treebank is pro-
portional to its KL−4

cpos3
similarity to the tar-

get corpus Rosa and Žabokrtský (2015a),19

which is again determined from the POS tri-
grams of the two corpora.

In any of these three methods, we can use either
the collection of original source treebanks (g = 0),
or the collection of permuted versions that have
been permuted to resemble our target language
(g = 1). These two collections are the same size.
For each sentence that we sample, we use a coin
with weight g ∈ [0, 1] to decide which collection
to use. See Appendix C for the value of the hy-
perparameter g. Notice that the single-source se-
lection method now really becomes double-source
selection—we separately select one real and one

18This is inspired by McDonald et al. (2011)’s method of
concatenating the source treebanks. However, our version
does not give more weight to treebanks with more sentences
(although it does effectively give more weight to treebanks
whose sentences are longer).

19In contrast, (Rosa and Žabokrtský, 2015b) used these
probabilities to interpolate among separately trained source
parsers (specifically, interpolating the linear scoring functions
of trained instances of MSTParser). We use them to mix
treebanks before training a single parser (an instance of Yara
parser).



0.0 0.1 0.2 0.3 0.4 0.5

Original Treebank: 0.22

0.0

0.1

0.2

0.3

0.4

0.5
Sy

nt
he

tic
 T

re
eb

an
k:

 0
.1

8
ar
bg
cs
da

de
en
es
et

fi
fr
got
grc

grc_proiel
hi
it
la_itt

la_proiel
nl
no
pt

Figure 6: This graph plots the x-axes from the two
graphs in Figure 1 against each other. We see that for
almost every source-target pair (330/376 = 96.01% of
the pairs), the SGD optimizer succeeded in construct-
ing a permuted source treebank B′ with lower diver-
gence to the target than the original source treebank B.
The diagonal line y = x is also shown for readability.
The number on each axis is the mean value.

Selection Mix= Mix 6=
Original 64.37 62.31 64.77

+Synthetic 64.55 62.77 65.00

Table 1: Cross-validation results on UAS using multi-
source transfer. “Original” uses the original treebanks
from UD (g = 0), and “+Synthetic” augments with
synthetic languages (allowing g > 0). Within each col-
umn, we highlight the better result, as well as the other
if it is not significantly worse (paired permutation test
by language, p < 0.05).

synthetic treebank. Similarly, in the unequal mix-
ture method, we have two sets of mixture weights,
one for each treebank collection.

The data split is shown in Table 2. In this
setting, we tuned the hyperparameters a bit dif-
ferently than in §5.1, using 5-fold cross valida-
tion with the 5-fold split shown in Table 2. That
is, to evaluate a given hyperparameter setting, we
evaluated the unlabeled attachment score (UAS)
on each group of 4 treebanks when transferring
parsers from the other 16.

Both during hyperparameter tuning and during
testing, we excluded any additional treebanks of
the target language from the collection of sources,
just as in footnotes 12–13.

All (376) in-family (46) cross-family (330)

Original 51.92 63.90 50.24

Synthetic 52.92 62.85 51.53

Figure 7: Unlabeled attachment scores (UAS) on 376
language pairs within the training languages. Each
marker represents one pair, whose x-axis is the UAS
on the target language using the original treebank of
the source language, and the y-axis is the UAS using
the synthetic treebank permuted from the original tree-
bank. The table in the upper left gives summary results;
the number in each column header gives the number of
points summarized. For each column, we boldface the
better result, as well as the other if it is not significantly
worse (paired permutation test, p < 0.01).

Train Test
bg
es
grc proiel
ar

en
la proiel
la itt
fi

de
fr
it
got

pt
no
et
nl

hi
cs
grc
da

la, hr, ga, he, hu,
fa, ta, cu, el, ro,
sl, ja ktc, sv,
fi ftb, id, eu, pl

Table 2: Data split of the 37 treebanks (33 languages)
from Wang and Eisner (2016, 2017). The dashed lines
in “Train” separate the 5 folds.

As shown in Table 1, the improvement from
adding the synthetic treebanks (g > 0 compared
to g = 0) varies for different methods. Specifi-
cally, the synthetic treebanks do not significantly
aid single-source selection, which is reasonable
because the selection criteria is more likely to pick
a source treebank that belongs to the same lan-
guage family as the target language,20 and as we
have seen, these cases are not effectively improved
by permutation (§5.2). They do significantly im-
prove the mixing methods, because source tree-
banks from other families contribute to the parsing
model, and these are improved by our approach.

20In the g = 0 experiment, 12/20 target languages selected
their single source from the same family.



All (376) in-family (46) cross-family (330)

Original 51.92 63.90 50.24

Synthetic 59.45 66.14 58.51

Figure 8: UAS on 376 language pairs within the train-
ing languages. The design is similar to Figure 7, but the
synthetic treebanks are generated using an oracle—the
actual realization model of the target language.

F Full result tables

We show breakdown results for multi-source
transfer in Table 3 and for single-source transfer
in Table 4.

All (48) in-family (10) cross-family (38)

Original 49.39 71.00 43.71

Synthetic (informed) 50.72 69.94 45.66

Synthetic (random) 52.72 62.36 50.18
Synthetic (all) 54.49 67.19 51.15

Figure 9: UAS on 48 of the language pairs within the
development languages.17 The design is similar to Fig-
ure 7, but we optimize divergence more aggressively by
selecting the best of 6 optimization runs for each pair
(informed initialization plus 5 random restarts). In 36
of 48 cases, the best run used a random restart. The av-
erage x and y values are given in the first and last rows
of the table, with the intermediate rows showing the re-
sults if we had used only informed initialization or only
random restarts. Each column boldfaces the best re-
sult as well as all others that are not significantly worse
(paired permutation test, p < 0.01).

Selection Mix= Mix6=
Target orig. +syn. orig. +syn. orig. +syn.
ar 48.08 51.83 47.5 48.08 51.69 51.62
bg 80.66 80.25 76.97 77.77 82.06 81.87
cs 70.67 69.52 67.33 67.39 66.59 67.28
da 69.86 69.94 70.08 69.83 70.47 70.87
de 64.27 63.65 64.97 65.44 65.66 65.51
en 64.00 63.91 62.57 63.13 63.30 63.57
es 77.74 77.85 75.58 75.26 79.14 79.16
et 76.00 75.77 67.11 69.26 75.94 76.11
fi 50.38 50.47 51.19 51.21 51.56 51.56
fr 80.51 80.57 77.89 77.96 80.66 80.83
got 68.20 67.58 62.18 62.75 68.23 67.93
grc 42.49 42.56 48.94 49.19 44.07 44.22
grc proiel 61.28 61.52 56.99 57.19 61.60 61.4
hi 41.39 41.60 28.59 31.42 35.06 37.62
it 82.01 81.88 79.62 79.62 81.9 81.94
la itt 48.61 50.00 50.84 51.07 51.89 52.06
la proiel 54.02 54.62 52.14 52.51 55.13 55.23
nl 59.27 59.08 59.94 60.81 61.16 61.46
no 70.33 70.38 69.37 69.39 71.54 71.53
pt 77.69 78.07 76.34 76.22 77.68 78.19

Table 3: Breakdown results from Table 1. For each
language and method, we boldface the better result, as
well as the other if it is not significantly worse (paired
permutation test by sentence, p < 0.05). Notice that
for the Mix= method, augmenting with synthetic per-
muted languages always yields a boldfaced result.



bg es grc proiel ar en la proiel la itt fi de fr it got pt no et nl hi cs grc da
bg - 69.66 60.85 45.34 71.65 63.05 58.83 68.48 68.34 70.04 75.11 66.13 70.18 73.65 62.50 69.67 36.11 75.81 64.64 75.33
es 70.99 - 60.32 51.54 67.74 58.18 55.05 56.21 63.34 76.42 76.64 61.23 70.49 70.50 45.07 67.23 31.25 69.76 50.81 68.55

grc proiel 54.02 49.28 - 39.27 50.23 50.42 43.89 45.23 49.77 47.06 48.93 59.58 49.44 51.04 43.81 51.20 37.80 53.44 - 51.50
ar 46.58 44.78 45.63 - 34.00 48.46 49.82 32.08 42.81 46.48 45.83 48.75 45.25 39.50 39.78 44.04 14.68 50.18 49.26 44.33
en 57.78 57.40 48.69 34.49 - 47.34 49.97 53.42 60.52 59.00 56.41 48.26 48.56 61.62 48.68 51.42 39.77 58.11 50.25 58.15

la proiel 50.87 45.14 51.26 34.09 44.34 - - 44.88 43.80 41.99 43.58 52.84 44.78 45.50 43.01 44.51 33.37 49.65 47.15 44.59
la itt 45.57 46.18 44.19 36.78 43.20 - - 44.08 43.44 43.55 44.78 45.21 45.62 45.34 39.95 42.71 29.03 48.37 46.54 42.10

fi 47.00 46.78 45.02 27.75 49.15 42.86 35.62 - 45.70 44.38 45.01 45.32 39.30 53.44 46.12 45.18 40.81 48.38 47.07 49.99
de 61.44 61.05 55.77 38.72 64.51 47.66 49.20 50.03 - 58.11 59.12 51.00 56.68 59.71 47.79 61.03 45.75 63.13 49.22 58.45
fr 73.57 78.51 62.09 54.09 69.71 57.54 56.97 57.46 67.28 - 76.56 62.37 70.34 73.00 41.96 69.62 33.36 72.12 53.56 72.35
it 75.65 79.97 62.53 56.19 71.14 61.09 62.34 55.53 66.24 78.03 - 61.98 71.74 75.48 45.91 70.45 34.09 73.70 53.53 73.57

got 61.33 53.35 65.16 41.92 53.42 62.67 47.83 52.03 51.71 47.94 50.89 - 52.85 55.20 52.51 52.85 35.80 57.17 56.76 54.74
pt 71.02 76.34 61.99 53.17 69.09 58.92 56.57 52.20 64.89 74.74 76.55 61.82 - 70.26 37.72 69.62 34.31 71.19 52.10 71.04
no 66.77 62.74 55.85 39.53 65.99 50.82 54.71 60.67 59.33 62.97 65.91 54.97 55.14 - 47.73 55.86 35.14 64.72 53.79 67.88
et 66.02 60.89 67.57 41.48 59.79 62.84 55.50 74.84 55.22 46.78 57.47 69.03 53.22 67.69 - 55.84 55.14 64.18 69.80 70.47
nl 52.60 56.46 50.44 38.91 55.29 47.57 47.93 45.24 59.38 52.89 55.09 49.42 54.53 50.52 38.41 - 40.81 53.30 44.96 57.79
hi 27.02 24.45 37.04 18.89 30.81 37.88 34.96 48.18 40.39 22.38 25.31 38.82 28.07 27.31 48.42 29.74 - 27.74 38.60 24.50
cs 64.33 64.21 53.48 36.69 53.65 55.41 54.00 58.09 58.78 60.03 65.64 55.42 60.58 60.11 50.16 57.66 33.99 - 55.16 60.16
grc 49.11 43.06 - 31.46 42.81 45.70 40.05 43.53 44.07 41.10 43.31 48.92 44.63 46.76 45.07 46.96 36.00 44.27 - 47.14
da 65.72 64.69 54.42 39.46 62.99 51.93 53.39 57.54 59.87 64.33 65.58 53.74 56.70 68.43 49.03 59.39 34.39 64.65 51.76 -
cu 64.84 55.15 64.42 45.55 56.87 65.82 49.97 54.62 52.16 50.95 54.11 68.34 55.78 59.22 54.91 54.12 33.59 60.19 60.35 58.69
el 62.69 56.82 58.68 45.80 59.49 50.34 57.11 48.52 61.31 58.95 57.99 57.61 59.92 60.82 41.97 56.08 39.93 64.70 58.24 57.97
eu 48.68 40.02 45.31 32.79 44.84 46.14 43.73 41.29 43.24 34.01 44.53 42.07 43.28 43.29 48.12 47.11 48.03 47.60 43.22 46.83
fa 50.33 48.78 42.43 45.96 38.08 48.37 49.03 39.40 45.34 48.73 48.11 50.91 47.47 40.97 38.37 43.30 28.86 54.08 49.82 44.22

fi ftb 49.76 47.07 51.10 31.12 50.56 46.65 37.79 - 51.57 42.72 49.08 48.42 47.99 54.20 48.06 48.54 46.93 50.03 48.29 46.35
ga 55.21 52.82 53.29 55.77 51.58 49.57 51.01 46.43 52.90 55.08 55.33 53.00 53.96 56.35 43.84 50.51 29.18 61.18 50.65 58.77
he 59.80 57.91 61.15 55.17 52.93 53.43 56.49 50.67 53.00 52.12 56.90 61.75 57.22 56.07 42.57 53.60 28.62 62.36 55.46 53.86
hr 64.23 62.44 52.19 37.70 55.99 55.34 54.35 58.48 57.13 57.74 64.86 55.13 57.31 53.39 48.44 55.28 33.35 69.26 48.08 60.81
hu 56.65 50.57 53.06 28.23 54.81 47.40 43.08 53.83 57.33 49.67 50.87 48.79 51.16 56.98 50.03 56.10 53.50 53.15 54.38 54.74
id 62.73 58.01 49.84 48.08 37.91 52.21 43.00 49.40 41.87 53.28 62.00 52.95 56.84 50.61 36.96 47.48 22.80 62.00 44.87 53.85

ja ktc 20.87 18.85 35.94 14.36 28.50 37.55 28.39 50.45 31.34 17.89 17.86 30.82 20.52 29.15 44.33 16.67 62.09 25.05 37.95 28.65
la 46.83 39.91 43.68 30.04 40.52 - - 43.91 38.81 36.32 38.62 46.01 41.86 42.55 42.06 40.97 35.62 43.28 45.64 43.49
pl 65.75 64.74 53.20 53.27 57.12 57.79 58.31 57.59 58.78 60.78 64.39 54.91 63.64 61.70 60.45 56.73 37.49 69.97 64.60 63.49
ro 67.44 64.81 55.10 51.82 59.18 53.32 56.65 54.98 57.10 62.13 65.79 54.93 57.00 60.97 46.47 55.91 28.52 65.48 55.33 64.64
sl 70.37 69.47 56.33 39.64 63.15 56.11 57.49 63.81 67.06 68.35 69.23 57.37 57.92 66.13 54.58 60.26 38.36 76.41 60.16 66.34
sv 68.72 66.99 58.19 39.60 69.88 55.46 57.12 64.25 65.37 65.67 69.35 58.62 61.06 75.33 53.59 64.17 39.60 68.41 59.44 73.22
ta 40.48 27.35 39.34 17.37 42.11 40.89 37.11 42.32 39.48 28.80 30.86 32.91 30.47 39.92 44.93 31.90 57.59 33.10 33.79 31.21

Table 4: UAS scores on single-source transfer results using the synthetic languages, where the columns represent
source treebanks and the rows represent target treebanks. The upper half of the table is the 5-fold cross-validation
result used for generating the y-axis of Figure 7. The lower half is the final test result used for the y-axis of
Figure 3. For each pair, we boldface the results that are not significantly worse (paired permutation test by sentence,
p < 0.05) than using the original treebanks.


