
A Appendix

A.1 Word Dropout as a Special Case
Here, we derive word dropout as an instance of our framework. First, let us introduce a new token, hnulli,
into both the source vocabulary and the target vocabulary. hnulli has the embedding of a all-0 vector and

is never trained. For a sequence x of words in a vocabulary with hnulli, we define the neighborhood N(x)

to be:

N(x) =

n

x

0
:

�

�

x

0�
�

= |x| and x

0
i

2 {x
i

, hnulli}
o

In other words, N(x) consists of x and all the sentences obtained by replacing a few words in x by hnulli.
Clearly, all augmented sentences bx that are sampled from x using word dropout fall into N(x).

In (4), the augmentation policy q⇤
(bx, by|x, y) was decomposed into two independent terms, one of

which samples the augmented source sentence bx and the other samples the augmented target sentence by

q⇤
(bx, by|x, y) = exp {r

x

(bx, x)/⌧

x

}
P

bx0 exp {r
x

(bx

0
, x)/⌧

x

}
| {z }

q(bx|x)

⇥ exp {r
y

(by, y)/⌧

y

}
P

by0 exp {ry(by0, y)/⌧y}
| {z }

q(by|y)

Word dropout is an instance of this decomposition, where r

y

takes the same form with r

x

, given by:

r

x

(bx, x) =

(

�HammingDistance(bx, x) if bx 2 N(x)

�1 otherwise

, (5)

where HammingDistance(bx, x) =

P|x|
i=1 1[bxi 6= x

i

]. To see this is indeed the case, let h be the Hamming

distance for bx 2 N(x) and set �

word

= exp {�1/⌧

x

}, then we have:

exp {r
x

(bx, x)/⌧

x

} = exp {�h/⌧

x

} = exp

⇢

�h · log 1

�

word

�

= exp {h · log �
word

} = �

word

h

, (6)

which is precisely the probability of dropping out h words in x, where each word is dropped with the

distribution Bernoulli(�

word

).

The difference between word dropout and SwitchOut comes in the fact that N(x) is much smaller than

the support of bx that SwitchOut can sample from, which is V

|x|
where V is the vocabulary. Word dropout

concentrates all augmentation probability mass into N(x) while SwitchOut spreads the mass into a larger

support, leading to a larger entropy. Meanwhile, both word dropout and SwitchOut are exponentially less

likely to diverge a way from x, ensuring the smoothness desiderata of a good data augmentation policy, as

we discussed in Section 2.3.

A.2 RAML as a Special Case
Here, we present a detailed description of how RAML is a special case of our proposed framework. For

each empirical observation (x, y) ⇠ bp, RAML defines a reward aware target distribution p
RAML

(Y |x, y)
for the model distribution p

✓

(Y | x) to match. Concretely, the target distribution in RAML has the form

p
RAML

(by|x, y) = exp {r(by; y)/⌧}
P

by0 exp {r(by0; y)/⌧}
,

where r is the task reward function. With this definition, RAML amounts to minimizing the expected KL

divergence between p
RAML

and p
✓

, i.e.

min

✓

E
x,y⇠bp [KL(p

RAML

(Y |x, y)kp
✓

(Y | x)]

() max

✓

E
x,y⇠bp

⇥

Eby⇠p
RAML

(Y |x,y) [logp✓

(by | x)]
⇤

() max

✓

Eby⇠p
RAML

(Y) [logp✓

(by | x)] ,

where p
RAML

(Y) is the marginalized target distribution, i.e. p
RAML

(Y) = E
x,y⇠bp [pRAML

(Y |x, y)]. Now,

notice that p
RAML

(Y) is a member of the augmentation distribution family in consideration (c.f. Section

2.2). Specifically, it is equivalent to a data augmentation distribution where

q(bx, by | x, y) = 1[bx = x] · p
RAML

(by|x, y)

() exp {s(bx, by;x, y)/⌧}
P

bx0
,by0 exp {s(bx0, by0;x, y)/⌧}

= 1[bx = x] · exp {r(by; y)/⌧}
P

by0 exp {r(by0; y)/⌧}

() s(bx, by;x, y) =

(

r(by; y), bx = x

�1, bx 6= x

. (7)

The last equality reveals an immediate connection between RAML and our proposed framework. In

summary, RAML can be seen as a special case of our data augmentation framework, where the similarity

function is defined by (7). Practically, this means RAML only consider pairs with source sentences from

the empirical set for data augmentation.

A.3 Datasets Descriptions

vocab (K) #sents

src tgt train dev test

en-vi 17.2 7.7 133.3K 1.6K 1.3K

de-en 32.0 22.8 153.3K 7.0K 6.8K

en-de 50.0 50.0 4.5M 2.7K 2.2K

Table 3: Statistics of the datasets.

Table 3 summarizes the statistics of the datasets in our experiments. The WMT 15 en-de dataset is one

order of magnitude larger than the IWSLT 16 de-en dataset and the IWSLT 15 en-vi dataset. For the en-vi

task, we use the data pre-processed by Luong and Manning (2015). For the en-de task, we use the data

pre-processed by Luong et al. (2015), with newstest2014 for validation and newstest2015 for testing. For

the de-en task, we use the data pre-processed by Ranzato et al. (2016).

A.4 Hyper-parameters

Task n

layers

n

heads

d

k

, d

v

d

model

d

inner

init clip �

drop

⌧

�1
x

⌧

�1
y

�

word

en-de 8 6 64 512 1024 0.04 25.0 0.10 1.00 0.80 0.1

de-en 8 5 64 288 507 0.035 25.0 0.25 0.95 0.90 0.1

en-vi 4 4 64 256 384 0.035 20.0 0.15 1.00 0.90 0.1

Table 4: Hyper-parameters for our experiments.

The hyper-parameters used in our experiments are in Table 4. All models are initialized uniformly at

random in the range as reported in Table 4. All models are trained with Adam (Kingma and Ba, 2015).

Gradients are clipped at the threshold as specified in Table 4. For the WMT en-de task, we use the legacy

learning rate schedule as specified by Vaswani et al. (2017). For the de-en task and the en-vi task, the

learning rate is initially 0.001, and is decreased by a factor of 0.97 for every 1000 steps, starting at step

8000. All models are trained for 100,000 steps, during which one checkpoint is saved for each 2500 steps

and the final evaluation is performed on the checkpoint with lowest perplexity on the dev set.

Multiple GPUs are used for each experiment. For the de-en and the en-vi experiments, if we use n

GPUs, where n 2 {1, 2, 4}, then we only perform 10

5
/n updates to the models’ parameters. We find that

this is sufficient to make the models converge.

A.5 Source Code for Sampling in TensorFlow

Hamming distance sampling in TensorFlow

1 import tensorflow as tf
2 def hamming_distance_sample(sents, tau, bos_id, eos_id, pad_id, vocab_size):
3 """Sample a batch of corrupted examples from sents.
4

5 Args:
6 sents: Tensor [batch_size, n_steps]. The input sentences.
7 tau: temperature.
8 vocab_size: to create valid samples.
9

10 Returns:
11 sents: Tensor [batch_size, n_steps]. The corrupted sentences.
12 """
13

14 # mask
15 mask = [
16 tf.equal(sents, bos_id),
17 tf.equal(sents, eos_id),
18 tf.equal(sents, pad_id),
19]
20 mask = tf.stack(mask, axis=0)
21 mask = tf.reduce_any(mask, axis=0)
22

23 # first, sample the number of words to corrupt for each sentence
24 batch_size, n_steps = tf.unstack(tf.shape(sents))
25 logits = -tf.range(tf.to_float(n_steps), dtype=tf.float32) * tau
26 logits = tf.expand_dims(logits, axis=0)
27 logits = tf.tile(logits, [batch_size, 1])
28 logits = tf.where(mask,
29 x=tf.fill([batch_size, n_steps], -float("inf")), y=logits)
30

31 # sample the number of words to corrupt at each sentence
32 num_words = tf.multinomial(logits, num_samples=1)
33 num_words = tf.reshape(num_words, [batch_size])
34 num_words = tf.to_float(num_words)
35

36 # <bos> and <eos> should never be replaced!
37 lengths = tf.reduce_sum(1.0 - tf.to_float(mask), axis=1)
38

39 # sample corrupted positions
40 probs = num_words / lengths
41 probs = tf.expand_dims(probs, axis=1)
42 probs = tf.tile(probs, [1, n_steps])
43 probs = tf.where(mask, x=tf.zeros_like(probs), y=probs)
44 bernoulli = tf.distributions.Bernoulli(probs=probs, dtype=tf.int32)
45

46 pos = bernoulli.sample()
47 pos = tf.cast(pos, tf.bool)
48

49 # sample the corrupted values
50 val = tf.random_uniform(
51 [batch_size, n_steps], minval=1, maxval=vocab_size, dtype=tf.int32)
52 val = tf.where(pos, x=val, y=tf.zeros_like(val))
53 sents = tf.mod(sents + val, vocab_size)
54

55 return sents

A.6 Source Code for Sampling in PyTorch

Hamming distance sampling in Pytorch

1 """
2 Sample a batch of corrupted examples from sents.
3

4 Args:
5 sents: Tensor [batch_size, n_steps]. The input sentences.

6 tau: Temperature.
7 vocab_size: to create valid samples.
8 Returns:
9 sampled_sents: Tensor [batch_size, n_steps]. The corrupted sentences.

10 """
11

12 mask = torch.eq(sents, bos_id) | torch.eq(sents, eos_id) | torch.eq(sents, pad_id)
13 lengths = mask.float().sum(dim=1)
14 batch_size, n_steps = sents.size()
15 # first, sample the number of words to corrupt for each sentence
16 logits = torch.arange(n_steps)
17 logits = logits.mul_(-1).unsqueeze(0).expand_as(
18 sents).contiguous().masked_fill_(mask, -float("inf"))
19 logits = Variable(logits)
20 probs = torch.nn.functional.softmax(logits.mul_(tau), dim=1)
21 num_words = torch.distributions.Categorical(probs).sample()
22

23 # sample the corrupted positions.
24 corrupt_pos = num_words.data.float().div_(lengths).unsqueeze(
25 1).expand_as(sents).contiguous().masked_fill_(mask, 0)
26 corrupt_pos = torch.bernoulli(corrupt_pos, out=corrupt_pos).byte()
27 total_words = int(corrupt_pos.sum())
28 # sample the corrupted values, which will be added to sents
29 corrupt_val = torch.LongTensor(total_words)
30 corrupt_val = corrupt_val.random_(1, vocab_size)
31 corrupts = torch.zeros(batch_size, n_steps).long()
32 corrupts = corrupts.masked_scatter_(corrupt_pos, corrupt_val)
33 sampled_sents = sents.add(Variable(corrupts)).remainder_(vocab_size)
34

35 return sampled_sents

