
Mapping Instructions and Visual Observations to Actions
with Reinforcement Learning

(Supplementary Material)
Dipendra Misra†, John Langford‡, and Yoav Artzi†

† Dept. of Computer Science and Cornell Tech, Cornell University, New York, NY 10044
{dkm, yoav}@cs.cornell.edu

‡ Microsoft Research, New York, NY 10011
jcl@microsoft.com

A Reward Shaping Theorems

In Section 6, we introduce two reward shaping
terms. We follow the safe-shaping theorems of Ng
et al. (1999) and Wiewiora et al. (2003). The theo-
rems outline potential-based terms that realize suf-
ficient conditions for safe shaping. Applying safe
terms guarantees the order of policies according
to the original problem reward does not change.
While the theory only applies when optimizing
the total reward, we show empirically the effec-
tiveness of the safe shaping terms in a contextual
bandit setting. For convenience, we provide the
definitions of potential-based shaping terms and
the theorems introduced by Ng et al. (1999) and
Wiewiora et al. (2003) using our notation. We re-
fer the reader to the original papers for the full de-
tails and proofs.

The distance-based shaping term F1 is defined
based on the theorem of Ng et al. (1999):

Definition. A shaping term F : S × A × S → R is
potential-based if there exists a function φ : S → R
such that, at time j, F (sj , aj , sj+1) = γφ(sj+1)−φ(sj),
∀sj , sj+1 ∈ S and aj ∈ A, where γ ∈ [0, 1] is a future
reward discounting factor. The function φ is the potential
function of the shaping term F .

Theorem. Given a reward function R(sj , aj), if the
shaping term is potential-based, the shaped reward
RF (sj , aj , sj+1) = R(sj , aj)+F (sj , aj , sj+1) does not
modify the total order of policies.

In the definition of F1, we set the discounting term
γ to 1.0 and omit it.

The trajectory-based shaping term F2 follows
the shaping term introduced by Brys et al. (2015).
To define it, we use the look-back advice shaping
term of Wiewiora et al. (2003), who extended the
potential-based term of Ng et al. (1999) for terms
that consider the previous state and action:

Definition. A shaping term F : S × A × S × A → R
is potential-based if there exists a function φ : S ×
A → R such that, at time j, F (sj−1, aj−1, sj , aj) =
γφ(sj , aj) − φ(sj−1, aj−1), ∀sj , sj−1 ∈ S and
aj , aj−1 ∈ A, where γ ∈ [0, 1] is a future reward dis-
counting factor. The function φ is the potential function of
the shaping term F .

Theorem. Given a reward function R(sj , aj),
if the shaping term is potential-based, the
shaped reward RF (sj−1, aj−1, sj , aj) =
R(sj , aj) + F (sj−1, aj−1, sj , aj) does not modify
the total order of policies.

In the definition of F2 as well, we set the discount-
ing term γ to 1.0 and omit it.

B Evaluation Systems
We implement multiple systems for evaluation.
STOP The agent performs the STOP action im-
mediately at the beginning of execution.
RANDOM The agent samples actions uniformly
until STOP is sampled or J actions were sampled,
where J is the execution horizon.
SUPERVISED Given the training data with N
instruction-state-execution triplets, we generate
training data of instruction-state-action triplets and
optimize the log-likelihood of the data. Formally,
we optimize the objective:

J =
1

N

N∑
i=1

m(i)∑
j=1

log π(s̃
(i)
j , a

(i)
j ) ,

where m(i) is the length of the execution ē(i), s̃(i)j

is the agent context at step j in sample i, and a(i)j

is the demonstration action of step j in demonstra-
tion execution ē(i). Agent contexts are generated
with the annotated previous actions (i.e., to gener-
ate previous images and the previous action). We
use minibatch gradient descent with ADAM up-
dates (Kingma and Ba, 2014).
DQN We use deep Q-learning (Mnih et al.,
2015) to train a Q-network. We use the architec-
ture described in Section 4, except replacing the
task specific part with a single 81-dimension layer.
In contrast to our probabilistic model, we do not



decompose block and direction selection. We use
the shaped reward function, including both F1 and
F2. We use a replay memory of size 2,000 and an
ε-greedy behavior policy to generate rollouts. We
attenuate the value of ε from 1 to 0.1 in 100,000
steps and use prioritized sweeping for sampling.
We also use a target network that is synchronized
after every epoch.
REINFORCE We use the REINFORCE al-
gorithm (Sutton et al., 1999) to train our agent.
REINFORCE performs policy gradient learning
with total reward accumulated over the roll-out
as opposed to using immediate rewards as in our
main approach. REINFORCE samples the total
reward using monte-carlo sampling by performing
a roll-out. We use the shaped reward function, in-
cluding both F1 and F2 terms. Similar to our ap-
proach, we initialize with a SUPERVISED model
and regularize the objective with the entropy of the
policy. We do not use a reward baseline.
SUPERVISED with Oracle Planner We use a
variant of our model assuming a perfect planner.
The model predicts the block to move and its tar-
get position as a pair of coordinates. We modify
the architecture in Section 4 to predict the block
to move and its target position as a pair of coordi-
nates. This model assumes that the sequence of ac-
tions is inferred from the predicted target position
using an oracle planner. We train using supervised
learning by maximizing the likelihood of the block
being moved and minimizing the squared distance
between the predicted target position and the an-
notated target position.

C Parameters and Initialization

C.1 Architecture Parameters

We use an RGB image of 120x120 pixels, and a
convolutional neural network (CNN) with 4 lay-
ers. The first two layers apply 32 8 × 8 filters
with a stride of 4, the third applies 32 4 × 4 fil-
ters with a stride of 2. The last layer performs
an affine transformation to create a 200-dimension
vector. We linearly scale all images to have zero
mean and unit norm. We use a single layer RNN
with 150-dimensional word embeddings and 250
LSTM units. The dimension of the action em-
bedding ψa is 56, including 32 for embedding the
block and 24 for embedding the directions. W(1)

is a 506× 120 matrix and b(1) is a 120-dimension
vector. W(D) is 120×20 for 20 blocks, and W(B)

is 120×5 for the four directions (north, south, east,

west) and the STOP action. We consider K = 4
previous images, and use horizon length J = 40.

C.2 Initialization

Embedding matrices are initialized with a zero-
mean unit-variance Gaussian distribution. All bi-
ases are initialized to 0. We use a zero-mean trun-
cated normal distribution to initialize the CNN fil-
ters (0.005 variance) and CNN weights matrices
(0.004 variance). All other weight matrices are
initialized with a normal distribution (mean=0.0,
standard deviation=0.01). The matrices used in
the word embedding function ψ are initialized
with a zero-mean normal distribution with stan-
dard deviation of 1.0. Action embedding matrices,
which are used for ψa, are initialized with a zero-
mean normal distribution with 0.001 standard de-
viation. We initialize policy gradient learning, in-
cluding our approach, with parameters estimated
using supervised learning for two epochs, except
the direction parameters W(D) and b(D), which
we learn from scratch. We found this initializa-
tion method to provide a good balance between
strong initialization and not biasing the learning
too much, which can result in limited exploration.

C.3 Learning Parameters

We use the distance error on a small validation set
as stopping criteria. After each epoch, we save
the model, and select the final model based on de-
velopment set performance. While this method
overfits the development set, we found it more re-
liable then using the small validation set alone.
Our relatively modest performance degradation on
the held-out set illustrates that our models general-
ize well. We set the reward and shaping penalties
δ = δf = 0.02. The entropy regularization coef-
ficient is λ = 0.1. The learning rate is µ = 0.001
for supervised learning and µ = 0.00025 for pol-
icy gradient. We clip the gradient at a norm of 5.0.
All learning algorithms use a mini-batch of size 32
during training.

D Dataset Comparisons
We briefly review instruction following datasets
in Table 1, including: Blocks (Bisk et al., 2016),
SAIL (MacMahon et al., 2006; Chen and Mooney,
2011), Matuszek (Matuszek et al., 2012), and
Misra (Misra et al., 2015). Overall, Blocks pro-
vides the largest training set and a relatively com-
plex environment with well over 2.4318 possible



Name # Samples Vocabulary Mean Instruction # Actions Mean Trajectory Partially
Size Length Length Observed

Blocks 16,767 1,426 15.27 81 15.4 No
SAIL 3,237 563 7.96 3 3.12 Yes
Matuszek 217 39 6.65 3 N/A No
Misra 469 775 48.7 > 100 21.5 No

Table 1: Comparison of several related natural language instructions corpora.

states.1 The most similar dataset is SAIL, which
provides only partial observability of the environ-
ment (i.e., the agent observes what is around it
only). However, SAIL is less complex on other
dimensions related to the instructions, trajectories,
and action space. In addition, while Blocks has
a large number of possible states, SAIL includes
only 400 states. The small number of states makes
it difficult to learn vision models that generalize
well. Misra (Misra et al., 2015) provides a param-
eterized action space (e.g., grasp(cup)), which
leads to a large number of potential actions. How-
ever, the corpus is relatively small.

E Common Questions
This is a list of potential questions following var-
ious decisions that we made. While we ablated
and discussed all the crucial decisions in the paper,
we decided to include this appendix to provide as
much information as possible.
Is it possible to manually engineer a competi-
tive reward function without shaping? Shap-
ing is a principled approach to add information to
a problem reward with relatively intuitive potential
functions. Our experiments demonstrate its effec-
tiveness. Investing engineering effort in designing
a reward function specifically designed to the task
is a potential alternative approach.
Are you using beam search? Why not? While
using beam search can probably increase our per-
formance, we chose to avoid it. We are motivated
by robotic scenarios, where implementing beam
search is a challenging task and often not possible.
We distinguish between beam search and back-
tracking. Beam search is also incompatible with
common assumptions of reinforcement learning,
although it is often used during test with reinforce-
ment learning systems.
Why are you using the mean of the LSTM
hidden states instead of just the final state?
We empirically tested both options. Using the
mean worked better. This was also observed by
Narasimhan et al. (2015). Understanding in which

1We compute this loose lower bound on the number of
states in the block world as 20! = 2.4318 (the number of
block permutations). This is a very loose lower bound.

scenarios one technique is better than the other is
an important question for future work.
Can you provide more details about initializa-
tion? Please see Appendix C.
Does the agent in the block world learn to move
obstacles and other blocks? While the agent
can move any block at any step, in practice, it
rarely happens. The agent prefers to move blocks
around obstacles rather than moving other blocks
and moving them back into place afterwards. This
behavior is learned from the data and shows even
when we use only very limited amount of demon-
strations. We hypothesize that in other tasks the
agent is likely to learn that moving obstacles is
advantageous, for example when demonstrations
include moving obstacles.
Does the agent explicitly mark where it is in the
instruction? We estimate that over 90% of the
instructions describe the target position. There-
fore, it is often not clear how much of the in-
struction was completed during the execution. The
agent does not have an explicit mechanism to mark
portions of the instruction that are complete. We
briefly experimented with attention, but found that
empirically it does not help in our domain. De-
signing an architecture to allows such considera-
tions is an important direction for future work.
Does the agent know which blocks are present?
Not all blocks are included in each task. The agent
must infer which blocks are present from the im-
age and instruction. The set of possible actions,
which includes moving all possible blocks, does
not change between tasks. If the agent chooses to
move a block that is not present, the world state
does not change.
Did you experiment with executing sequences
of instruction? The Bisk et al. (2016) includes
such instructions, right? The majority of exist-
ing corpora, including SAIL (Chen and Mooney,
2011; Artzi and Zettlemoyer, 2013; Mei et al.,
2016), provide segmented sequences of instruc-
tions. Existing approaches take advantage of
this segmentation during training. For example,
Chen and Mooney (2011), Artzi and Zettlemoyer
(2013), and Mei et al. (2016) all train on seg-



mented data and test on sequences of instructions
by doing inference on one sentence at a time.
We are also able to do this. Similar to these ap-
proaches, we will likely suffer from cascading er-
rors. The multi-instruction paragraphs in the Bisk
et al. (2016) data are an open problem and present
new challenges beyond just instruction length. For
example, they often merge multiple block place-
ments in one instruction (e.g, put the SRI, HP, and
Dell blocks in a row). Since the original corpus
does not provide trajectories and our automatic
generation procedure is not able to resolve which
block to move first, we do not have demonstra-
tions for this data. The instructions also present a
significantly more complex task. This is an impor-
tant direction for future work, which illustrates the
complexity and potential of the domain.
Potential-based shaping was proven to be safe
when maximizing the total expected reward.
Does this apply for the contextual bandit set-
ting, where you maximize the immediate re-
ward? The safe shaping theorems (Appendix A)
do not hold in our contextual bandit setting. We
show empirically that shaping works in practice.
However, how and if it changes the order of poli-
cies is an open question.
How long does it take to train? How many
frames the agent observes? The agent observes
about 2.5 million frames. It takes 16 hours using
50% capacity of an Nvidia Pascal Titan X GPU to
train using our approach. DQN takes more than
twice the time for the same number of epochs. Su-
pervised learning takes about 9 hours to converge.
We also trained DQN for around four days, but did
not observe improvement.
Did you consider initializing DQN with super-
vised learning? Initializing DQN with the prob-
abilistic supervised model is challenging. Since
DQN is not probabilistic it is not clear what this
initialization means. Smart initialization of DQN
is an important problem for future work.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly

supervised learning of semantic parsers for map-
ping instructions to actions. Transactions of the
Association of Computational Linguistics 1:49–62.
http://aclweb.org/anthology/Q13-1005.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016.
Natural language communication with robots. In
Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
https://doi.org/10.18653/v1/N16-1089.

Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia
Chernova, Matthew E. Taylor, and Ann Nowé. 2015.
Reinforcement learning from demonstration through
shaping. In Proceedings of the International Joint
Conference on Artificial Intelligence.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Matthew MacMahon, Brian Stankiewics, and Ben-
jamin Kuipers. 2006. Walk the talk: Connecting
language, knowledge, action in route instructions.
In Proceedings of the National Conference on Ar-
tificial Intelligence.

Cynthia Matuszek, Evan Herbst, Luke S. Zettlemoyer,
and Dieter Fox. 2012. Learning to parse natural lan-
guage commands to a robot control system. In Pro-
ceedings of the International Symposium on Experi-
mental Robotics.

Hongyuan Mei, Mohit Bansal, and R. Matthew Walter.
2016. What to talk about and how? selective gener-
ation using lstms with coarse-to-fine alignment. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
https://doi.org/10.18653/v1/N16-1086.

Kumar Dipendra Misra, Kejia Tao, Percy Liang, and
Ashutosh Saxena. 2015. Environment-driven lexi-
con induction for high-level instructions. In Pro-
ceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).
https://doi.org/10.3115/v1/P15-1096.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, and Georg Ostrovski. 2015. Human-level con-
trol through deep reinforcement learning. Nature
518(7540).

Karthik Narasimhan, Tejas Kulkarni, and Regina
Barzilay. 2015. Language understanding for text-
based games using deep reinforcement learning.
In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing.
https://doi.org/10.18653/v1/D15-1001.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell.
1999. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In

http://aclweb.org/anthology/Q13-1005
http://aclweb.org/anthology/Q13-1005
http://aclweb.org/anthology/Q13-1005
http://aclweb.org/anthology/Q13-1005
https://doi.org/10.18653/v1/N16-1089
https://doi.org/10.18653/v1/N16-1089
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.3115/v1/P15-1096
https://doi.org/10.3115/v1/P15-1096
https://doi.org/10.3115/v1/P15-1096
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001


Proceedings of the International Conference on Ma-
chine Learning.

Richard S. Sutton, David A. McAllester, Satinder P.
Singh, and Yishay Mansour. 1999. Policy gradi-
ent methods for reinforcement learning with func-
tion approximation. In Advances in Neural Infor-
mation Processing Systems.

Eric Wiewiora, Garrison W. Cottrell, and Charles
Elkan. 2003. Principled methods for advising re-
inforcement learning agents. In Proceedings of the
International Conference on Machine Learning.


