
Appendices

A Note on Adaptive Unigram Table

Algorithm 1 illustrates the efficient implementation of the adaptive unigram
table (c.f., Section 3.2.2). In line 8 and 10, F and τF

z are not always integers
and therefore they are probabilistically converted into integers as explained
in the paper.

Time complexity of Algorithm 1 is O(1) per update in case of α = 1.0.
When |T | < τ , the update (line 8) takes O(1) time since we always have
F = 1. When τ ≤ |T |, we have τ ≤ z and consequently τF

z ≤ 1. This means
that the update (line 10–13) takes O(1) time.

Even if α ̸= 1.0, the value of z becomes sufficiently large in practice, and
thus the update becomes efficient as demonstrated in the experiment.

Algorithm 1 Adaptive unigram table.

1: f(w)← 0 for all w ∈ W
2: z ← 0
3: for i = 1, . . . , n do
4: f(wi)← f(wi) + 1
5: F ← f(wi)

α − (f(wi)− 1)α

6: z ← z + F
7: if |T | < τ then
8: add F copies of wi to T
9: else

10: for t = 1, . . . , τFz do
11: j is randomly drawn from [1, |T |]
12: T [j]← wi

13: end for
14: end if
15: end for

B Complete Proofs

This appendix provides complete proofs of Theorems 1, 3, and 5.

1



B.1 Proof of Theorem 1

Proof. The first order moment of ∆L(θ) can be rewritten as

E[∆L(θ)] = E
[
2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

δwi,w(qi(v)− qn(v))ψ−
w,v

]

=
2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

E[δwi,w(qi(v)− qn(v))ψ−
w,v]

=
2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

E[Xi,w(Yi,v −Yn,v)ψ
−
w,v]

=
2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

(
E[Xi,wYi,v]− E[Xi,wYn,v]

)
ψ−
w,v.

Here, for any i and j such that i ≤ j, we have

E[Xi,wYj,v] = E[Xi,w
1

j

j∑
j′=1

Xj′,v] =
1

j

j∑
j′=1

E[Xi,wXj′,v]

=
1

j

j∑
j′=1

(
E[Xi,w]E[Xj′,v] + V[Xi,w,Xj′,v]

)
= µwµv +

1

j
ρw,v.

Therefore, we have

E[∆L(θ)] = 2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

(
µwµv +

1

i
ρw,v − µwµv −

1

n
ρw,v

)
ψ−
w,v

=
2ck(Hn − 1)

n

∑
w∈W

∑
v∈W

ρw,vψ
−
w,v.

B.2 Proof of Theorem 3

To prove Theorem 3, we begin by examining the upper- and lower-bounds
of E[Xi,wYj,vYk,v] in the following Lemma, and then make use of the bounds
to evaluate the order of the second order moment of ∆L(θ).

Lemma. For any j and k such that j ≤ k, we have

E[Xi,wYj,vYk,v] ≤
(jk − 2j − k + 2)µwµ

2
v + 2j + k − 2

jk
,

E[Xi,wYj,vYk,v] ≥
(jk − 2j − k + 2)µwµ

2
v

jk
.
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Proof. We have

E[Xi,wYj,vYk,v] = E[Xi,w

(
1

j

j∑
l=1

Xl,v

)(
1

k

k∑
m=1

Xm,v

)
]

=

j∑
l=1

k∑
m=1

E[Xi,wXl,vXm,v]

jk
.

To prove the lemma, we rewrite the expression by splitting the set of (l,m)

into two subsets. Let S(j,k)i (j ≤ k) be a set of (l,m) such that Xi,w, Xl,v,
and Xm,v are independent from each other (i.e., i, l, and m are all different),

and let S̄(j,k)i be its complementary set:

S(j,k)i = {(l,m) ∈ {1, 2, . . . , j} × {1, 2, . . . , k} | i ̸= l ∧ l ̸= m ∧m ̸= i},

S̄(j,k)i = {1, 2, . . . , j} × {1, 2, . . . , k} \ S(j,k)i .

Then, E[Xi,wYj,vYk,v] is upper-bounded as

E[Xi,wYj,vYk,v] =
∑

(l,m)∈S(j,k)
i

E[Xi,w]E[Xl,v]E[Xm,v]

jk
+

∑
(l,m)∈S̄(j,k)

i

E[Xi,wXl,vXm,v]

jk

≤
∑

(l,m)∈S(j,k)
i

µwµ
2
v

jk
+

∑
(l,m)∈S̄(j,k)

i

1

jk

=
|S(j,k)i |µwµ2v + |S̄

(j,k)
i |

jk
,

where the inequality holds because Xi,w, Xl,v, and Xm,v are binary random

variables and thus E[Xi,wXl,vXm,v] ≤ 1. Here, we have |S̄(j,k)i | = 2j + k − 2,

because S̄(j,k)i includes j elements such that l = m and also includes k − 1
and j − 1 elements such that i = l ̸= m and i = m ̸= l, respectively. And

we consequently have |S(j,k)i | = jk − |S̄(j,k)i | = jk − 2j − k + 2. Therefore,
the upper-bound can be rewritten as

E[Xi,wYj,vYk,v] ≤
(jk − 2j − k + 2)µwµ

2
v + 2j + k − 2

jk
.

Similarly, by making use of 0 ≤ E[Xi,wXl,vXm,v], the lower-bound can
be derived:

E[Xi,wYj,vYk,v] =
∑

(l,m)∈S(j,k)
i

E[Xi,w]E[Xl,v]E[Xm,v]

jk
+

∑
(l,m)∈S̄(j,k)

i

E[Xi,wXl,vXm,v]

jk

≥
∑

(l,m)∈S(j,k)
i

µwµ
2
v

jk
+

∑
(l,m)∈S̄(j,k)

i

0

jk

=
|S(j,k)i |µwµ2v

jk
=

(jk − 2j − k + 2)µwµ
2
v

jk
.
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Making use the above Lemma, we can prove Theorem 3.

Proof. The upper-bound of E[∆L(θ)2] is examined to prove the theorem.
Let Ψi,n,w,v = δwi,w(qi(v) − qn(v))ψ−

w,v. Making use of Jensen’s inequality,
we have

E[∆L(θ)2] = E
[
4c2k2

n2

(∑
w∈W

∑
v∈W

n∑
i=1

Ψi,n,w,v

)2]

= E
[
4c2k2

n2
|W|4n2

(∑
w∈W

∑
v∈W

n∑
i=1

1

|W|2n
Ψi,n,w,v

)2]

≤ E
[
4c2k2

n2
|W|4n2

∑
w∈W

∑
v∈W

n∑
i=1

1

|W|2n
Ψi,n,w,v

]

=
4c2k2|W|2

n

∑
w∈W

∑
v∈W

n∑
i=1

E[Ψ2
i,n,w,v].

Furthermore, the term E[Ψ2
i,n,w,v] is upper-bounded as

E[Ψ2
i,n,w,v] = E[δ2wi,v(qi(v)− qn(v))

2(ψ−
w,v)

2]

= E[δwi,v(qi(v)− qn(v))2(ψ−
w,v)

2]

= E[Xi,w(Yi,v −Yn,v)
2](ψ−

w,v)
2

= (E[Xi,wY
2
i,v]− 2E[Xi,wYi,vYn,v] + E[Xi,wY

2
n,v])(ψ

−
w,v)

2

≤
{
1

i2

(
(i2 − 3i+ 2)µwµ

2
v + 3i− 2

)
− 2

1

in
(in− 2i− n+ 2)µwµ

2
v

+
1

n2

(
(n2 − 3n+ 2)µwµ

2
v + 3n− 2

)}
(ψ−

w,v)
2

=

{
(2µwµ

2
v − 2)

1

i2
+ (−µwµ2v −

4

n
µwµ

2
v + 3)

1

i

+ (2µwµ
2
v − 2)

1

n2
+ (µwµ

2
v + 3)

1

n

}
(ψ−

w,v)
2,
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where the above Lemma is used to derive the inequality. Therefore, we have

n∑
i=1

E[Ψ2
i,n,w,v] ≤

n∑
i=1

{
(2µwµ

2
v − 2)

1

i2
+ (−µwµ2v −

4

n
µwµ

2
v + 3)

1

i

+ (2µwµ
2
v − 2)

1

n2
+ (µwµ

2
v + 3)

1

n

}
(ψ−

w,v)
2

=

{
(2µwµ

2
v − 2)Hn,2 + (−µwµ2v −

4

n
µwµ

2
v + 3)Hn

+ (2µwµ
2
v − 2)

1

n
+ (µwµ

2
v + 3)

}
(ψ−

w,v)
2,

where Hn,2 represents the generalized harmonic number of order n of 2.
Since Hn,2 ≤ Hn = O(log(n)), we have

∑n
i=1 E[Ψ2

i,n,w,v] = O(log(n)) and

consequently E[∆L(θ)2] = O( log(n)n ).

B.3 Proof of Theorem 5

Proof. The proof is made by the squeeze theorem. Let l = LB(θ̂)−LB(θ∗).
Then, Chebyshev’s inequality gives, for any ϵ1 > 0,

lim
n→∞

V[l]
ϵ21
≥ lim

n→∞
Pr

[
|l − E[l]| ≥ ϵ1

]
= lim

n→∞
Pr

[
l − E[l] ≤ −ϵ1

]
+Pr

[
ϵ1 ≤ l − E[l]

]
= lim

n→∞
Pr

[
l ≤ E[l]− ϵ1

]
+Pr

[
E[l] + ϵ1 ≤ l

]
.

Remind that Eq. (2) in Lemma 4 means that for any ϵ2 > 0, there exists n′

such that if n′ ≤ n then |E[l]| < ϵ2. Therefore we have

lim
n→∞

V[l]
ϵ21
≥ lim

n→∞
Pr

[
l ≤ E[l]− ϵ1

]
+Pr

[
E[l] + ϵ1 ≤ l

]
≥ lim

n→∞
Pr

[
l ≤ −ϵ2 − ϵ1

]
+Pr

[
ϵ2 + ϵ1 ≤ l

]
= lim

n→∞
Pr

[
|l| ≥ ϵ1 + ϵ2

]
≥ 0.

The arbitrary property of ϵ1 and ϵ2 allows ϵ1+ ϵ2 to be rewritten as ϵ. Also,
Eq. (3) in Lemma 4 implies that limn→∞

V[l]
ϵ21

= 0. Therefore, the squeeze

theorem gives the proof.

C Theoretical Analysis in Smoothed Case

This appendix investigates the convergence of the first and second order
moment of ∆L(θ) in the smoothed case.
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C.1 Convergence of the first order moment of ∆L(θ)

The first order moment of ∆L(θ) in the smoothed case is given as

E[∆L(θ)] = 2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

(
E[Xi,wZi,v]− E[Xi,wZn,v]

)
ψ−
w,v.

Let us investigate E[Xi,wZj,v] as we did E[Xi,wYj,v] in the unsmoothed case.
Let ϕw = gw(µ)−

∑
v∈W Mw,vgv(µ). Then, for any i and j such that i ≤ j,

we have

E[Xi,wZj,v] ≈ E[Xi,w

(
gv(µ) +

∑
v′∈W

Mv,v′(Yj,v′ − gv′(µ))
)
]

= E[Xi,w(
∑
v′∈W

Mv,v′Yj,v′ + ϕv)]

=
∑
v′∈W

Mv,v′E[Xi,wYj,v′ ] + ϕvE[Xi,w]

=
∑
v′∈W

Mv,v′(µwµv′ +
1

j
ρw,v′) + µwϕv

=
∑
v′∈W

Mv,v′µwµv′ + µwϕv +
1

j

∑
v′∈W

Mv,v′ρw,v′ .

Therefore, plugging the above equation into E[∆L(θ)] yields E[∆L(θ)] ≈
O( log(n)n ).

C.2 Convergence of the second order moment of ∆L(θ)

Next, let us examine the convergence of the second order moment of ∆L(θ).
This can be confirmed by inspecting E[Xi,wZj,vZk,v] and then E[Ψ2

i,n,w,v]
analogously to the unsmoothed case.

For any i, j, and k such that i ≤ j ≤ k, we have

E[Xi,wZj,vZk,v] ≈ E[Xi,w

( ∑
v′∈W

Mv,v′Yj,v′ + ϕv

)( ∑
v′′∈W

Mv,v′′Yk,v′′ + ϕv

)
]

=
∑
v′∈W

∑
v′′∈W

Mv,v′Mv,v′′E[Xi,wYj,v′Yk,v′′ ]

+
∑
v′∈W

Mv,v′ϕvE[Xi,wYj,v′ ] +
∑

v′′∈W
Mv,v′′ϕvE[Xi,wYk,v′′ ] + ϕ2vE[Xi,w]

=
∑
v′∈W

∑
v′′∈W

Mv,v′Mv,v′′E[Xi,wYj,v′Yk,v′′ ]

+
∑
v′∈W

Mv,v′ϕv(µwµv′ +
1

j
ρw,v′)

+
∑

v′′∈W
Mv,v′′ϕv(µwµv′′ +

1

k
Σw,v′′) + µwϕ

2
v.
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Therefore, we have

E[Ψ2
i,n,w,v] = E[Xi,w(Zi,v − Zn,v)

2]ψ2
w,v

≈
∑
v′∈W

∑
v′′∈W

Mv,v′Mv,v′′

(
E[Xi,wYi,v′Yi,v′′ ]

− 2E[Xi,wYi,v′Yn,v′′ ] + E[Xi,wYn,v′Yn,v′′ ]

)
ψ2
w,v.

Using similar bounds to Lemma 3, we also have
∑n

i=1 E[Ψ2
i,n,w,v] ≈ O(log(n))

and consequently E[∆L(θ)2] ≈ O( log(n)n ).

D Theoretical Analysis of Mini-batch SGNS

This appendix demonstrates that Theorems 2 and 3 also hold for the mini-
batch SGNS, that is, the first and second order moments of ∆L(θ) are in

the order of O( log(n)n ). We here investigate the mini-batch setting in which
M words, as opposed to a single word in the case of incremental SGNS, are
processed at a time.

Definition. Let Y
(M)
i,w be a random variable that represents qi(w) when

α = 1.0 and the mini-batch size is M . Then, it is given as

Y
(M)
i,w = Yb(i,M),w

where b(i,M) = ⌈ i
M ⌉ ×M . Note that we always have Y

(M)
n,w = Yn,w and

i ≤ b(i,M).

We first examine the first order moment of ∆L(θ) by taking a similar
step as the proof of Theorem 1. The first order moment of ∆L(θ) is given
as

E[∆L(θ)] = 2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

(
E[Xi,wY

(M)
j,v ]− E[Xi,wY

(M)
n,v ]

)
ψ−
w,v

=
2ck

n

∑
w∈W

∑
v∈W

n∑
i=1

(
E[Xi,wY

(M)
j,v ]− E[Xi,wYn,v]

)
ψ−
w,v

=
2ck

n

∑
w∈W

∑
v∈W

ρw,vψ
−
w,v

( n∑
i=1

1

b(i,M)
−

n∑
i=1

1

n

)
.

Because we have

n∑
i=1

1

b(i,M)
≤

n∑
i=1

1

i
= Hn = O(log(n)), (1)
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we have E[∆L(θ)] = O( log(n)n ).
Next, we investigate the second order moment of E[∆L(θ)]. Analogously

to the last inequality of the proof of Theorem 3, we have
n∑

i=1

E[Ψ2
i,n,w,v] ≤

n∑
i=1

{
(2µwµ

2
v − 2)

1

b(i,M)2
+ (−µwµ2v −

4

n
µwµ

2
v + 3)

1

b(i,M)

+ (2µwµ
2
v − 2)

1

n2
+ (µwµ

2
v + 3)

1

n

}
(ψ−

w,v)
2.

Since we have
n∑

i=1

1

b(i,M)2
≤

n∑
i=1

1

i2
= Hn,2 = O(log(n)), (2)

it can be proven that E[∆L(θ)2] = O( log(n)n ).

E Experimental Configurations

This appendix details the experimental configurations that are not described
in the paper.

E.1 Verification of theorems

The vocabulary set in the Gigaword corpus was reduced to 1000 by convert-
ing infrequent words into the same special tokens because it is expensive to
evaluate the expectation terms in ∆L(θ) for a large vocabulary set.

The parameter θ was set to 100-dimensional vectors each element of
which is drawn from [−0.5, 0.5] uniformly at random. In preliminary ex-
periments we confirmed that the result is not sensitive to the choice of the
parameter value. Note that the same parameter value was used for all n.
We set c and k as c = 5 and k = 5.

The mean µw and covariances ρw,v are required to compute the theo-
retical value of the first order moment. They were given as the maximum
likelihood estimations from the entire Gigaword corpus.

E.2 Quality of word embeddings

Table 1 summarizes the training configurations. Those parameter values
were used for both incremental and batch SGNS. The learning rate was
set to 0.1 for incremental and batch, which use AdaGrad to adjust the
learning rate. On the other hand, the learning rate of w2v, which uses linear
decay function to adjust the learning rate, was set as the default value of
0.025.

In the word similarity and the analogy tasks, we use tw + cw as an
embedding of the word w [2, 1]. The analogy task was performed by using
3CosMul [1].
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Parameter Value

Embedding size 400
Number negative samples 10
Subsampling threshold 1.0× 10−5

Subsampling method dirty
Window size 10

Smoothing parameter α 0.75

Table 1: Training configurations. Incremental SGNS used the incrementally-
updated frequency for the subsampling.
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