A Proof of Proposition 1
We provide here a detailed proof of Proposition 1.

A.1 Forward Propagation

The optimization problem is

csoftmax(z,u) = argmin  —H(a) — 2z«
ot 1Ta=1
o 0<a<u.
The Lagrangian function is:
Lla, \p,v) = —H(a)—z a+ X1 Ta—-1)
—plat+v(a—u). (14)

To obtain the solution, we invoke the Karush-Kuhn-Tucker conditions. From the stationarity condition,
we have 0 = log(ax) + 1 — z + A1 — p + v, which due to the primal feasibility condition implies that
the solution is of the form:

a=exp(z+p—v)/Z, (15)

where Z is a normalization constant. From the complementarity slackness condition, we have that 0 <
a; < u; implies that u; = v; = 0 and therefore «; = exp(z;)/Z. On the other hand, v; > 0 implies
«; = u;. Hence the solution can be written as «; = min{exp(z;)/Z, u;}, where Z is determined such
that the distribution normalizes:
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with A= {i € [L] | oy < u;}.

A.2 Gradient Backpropagation

We now turn to the problem of backpropagating the gradients through the constrained softmax transfor-

mation. For that, we need to compute its Jacobian matrix, i.e., the derivatives gj? and gg‘? fori,j € [L].
J J
Let us first express «v as
exp(zi)(1—s) ;
o ={ 2jeap(z)’ icA (17)
Ug, ? ¢ A7

where s = . 4 u;. Note that we have 0s/0z; = 0, Vj, and 9s/0u; = 1(j ¢ A). To compute the
entries of the Jacobian matrix, we need to consider several cases.

Case1: In this case, the evaluation of Eq. 17 goes through the first branch. Let us first compute
the derivative with respect to u;. Two things can happen: if j € A, then s does not depend on u;, hence
Joi = 0. Else, if j ¢ A, we have
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Now let us compute the derivative with respect to z;. Three things can happen: if j € A and i # j, we
have

Ja  —exp(zi)exp(z;)(1 — s)
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= —aa5/(1—s). (18)




If j € Aand i = j, we have
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= a;—a?/(1—5). (19)
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Finally, if j ¢ A, we have 37 =

Case 2: In this case, the evaluation of Eq. 17 goes through the second branch, which means

that 9% = 0, always. Let us now compute the derivative with respect to u;. This derivative is always

0z;
zero unless ¢ = 7, in which case gg? =
J

To sum up, we have:
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0, otherwise.

Therefore, we obtain:
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= 1(j ¢ A)(deyj —m), (23)
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