
A Proof of Proposition 1

We provide here a detailed proof of Proposition 1.

A.1 Forward Propagation

The optimization problem is

csoftmax(z,u) = argmin −H(α)− z>α

s.t.
{

1>α = 1
0 ≤ α ≤ u.

The Lagrangian function is:

L(α, λ,µ,ν) = −H(α)− z>α+ λ(1>α− 1)

−µ>α+ ν>(α− u). (14)

To obtain the solution, we invoke the Karush-Kuhn-Tucker conditions. From the stationarity condition,
we have 0 = log(α) + 1 − z + λ1 − µ + ν, which due to the primal feasibility condition implies that
the solution is of the form:

α = exp(z + µ− ν)/Z, (15)

where Z is a normalization constant. From the complementarity slackness condition, we have that 0 <
αi < ui implies that µi = νi = 0 and therefore αi = exp(zi)/Z. On the other hand, νi > 0 implies
αi = ui. Hence the solution can be written as αi = min{exp(zi)/Z, ui}, where Z is determined such
that the distribution normalizes:

Z =

∑
i∈A exp(zi)

1−
∑

i/∈A ui
, (16)

with A = {i ∈ [L] | αi < ui}.

A.2 Gradient Backpropagation

We now turn to the problem of backpropagating the gradients through the constrained softmax transfor-
mation. For that, we need to compute its Jacobian matrix, i.e., the derivatives ∂αi

∂zj
and ∂αi

∂uj
for i, j ∈ [L].

Let us first express α as

αi =

{
exp(zi)(1−s)∑

j∈A exp(zj) , i ∈ A
ui, i /∈ A,

(17)

where s =
∑

j /∈A uj . Note that we have ∂s/∂zj = 0, ∀j, and ∂s/∂uj = 1(j /∈ A). To compute the
entries of the Jacobian matrix, we need to consider several cases.

Case 1: i ∈ A. In this case, the evaluation of Eq. 17 goes through the first branch. Let us first compute
the derivative with respect to uj . Two things can happen: if j ∈ A, then s does not depend on uj , hence
∂αi
∂uj

= 0. Else, if j /∈ A, we have

∂αi
∂uj

=
−exp(zi)

∂s
∂uj∑

k∈A exp(zk)
= −αi/(1− s).

Now let us compute the derivative with respect to zj . Three things can happen: if j ∈ A and i 6= j, we
have

∂αi
∂zj

=
−exp(zi)exp(zj)(1− s)(∑

k∈A exp(zk)
)2

= −αiαj/(1− s). (18)



If j ∈ A and i = j, we have

∂αi
∂zi

= (1− s)×

exp(zi)
∑

k∈A exp(zk)− exp(zi)
2(∑

k∈A exp(zk)
)2

= αi − α2
i /(1− s). (19)

Finally, if j /∈ A, we have ∂αi
∂zj

= 0.

Case 2: i /∈ A. In this case, the evaluation of Eq. 17 goes through the second branch, which means
that ∂αi

∂zj
= 0, always. Let us now compute the derivative with respect to uj . This derivative is always

zero unless i = j, in which case ∂αi
∂uj

= 1.

To sum up, we have:
∂αi
∂zj

=

{
1(i = j)αi − αiαj

1−s , if i, j ∈ A
0, otherwise,

(20)

and

∂αi
∂uj

=


− αi

1−s , if i ∈ A, j /∈ A
1, if i, j /∈ A, i = j
0, otherwise.

(21)

Therefore, we obtain:

dzj =
∑
i

∂αi
∂zj

dαi

= 1(j ∈ A)

(
αjdαj −

αj
∑

i∈A αidαi

1− s

)
= 1(j ∈ A)αj(dαj −m), (22)

and

duj =
∑
i

∂αi
∂uj

dαi

= 1(j /∈ A)

(
dαj −

∑
i∈A αidαi

1− s

)
= 1(j /∈ A)(dαj −m), (23)

where m =
∑

i∈A αidαi

1−s .


