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Common OOV handling techniques

e None (random init)
e One UNK to rule them all

o Average existing embeddings ' Jnerviseg

task corpus

o Trained with embeddings (stochastic unking)

e Add subword model during WE training
o Bhatiaetal. (2016), Wieting et al. (2016)

o Whatif we don’t have access to the original
corpus? (e.g. FastText)
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Char2Tag

e Add subword layer to supervised task
o Lingetal. (2015), Plank et al. (2016)
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Enter MIMICK

e What data do we have, post-unlabeled corpus?
o Vector dictionary
o Orthography (the way words are spelled)

e Use the former as training objective, latter as input

e Pre-trained vectors as target
o No need to access original unlabeled corpus ' ; N

o Many training examples Pty o)
o (No context) corpus task corpus
e Subword units as inputs
o Very extensible *
o (Character inventory changes?) \ oEET
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e Script type
o Tinnon-alphabetic scripts
o ldeographic (Chinese) - ~12K characters
o Hebrew, Arabic - no casing, no vowels, syntactic fusion
o Vietnamese - tokens are non-compositional syllables
e Attribute-carrying tokens .
o Range from 0% (Vietnamese) to 92.4% (Hindi) o
e OOV rate (UD against Polyglot vocabulary)

o 16.9%-70.8% type-level (median 29.1%)
o 2.2%-33.1% token-level (median 9.2%)
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Results - Full Data

POS accuracy (Full data), macro-avg
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Results - 5,000 training tokens
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Results - Language Types (5,000 tokens)
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Results - Chinese

POS accuracy (5K training tokens), Chinese Attribute F1 (5K training tokens), Chinese
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o ...
e Code compatible with w2v, Polyglot, FastText

e Models for Polyglot also on github
o <1MB each, dynet format
o Learnall OOVsin advance and add to param table, or
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e MIMICK: an OOV-extension embedding processing step for downstream tasks
e Compositional model complementing distributional artifact

e Powerful technique for low-resource scenarios

e Especially good for:

o Morphologically-rich languages
o Large charactervocabulary

e Sore spots and Future Work
o Vietnamese - syllabic vocabulary
o Hebrew and Arabic - nontrivial tokenization, no case
o Tryother subword levels (morphemes, phonemes, bytes)
o Improve morphosyntactic attribute tagging scheme
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Questions?

Neglect
Satisfaction
lliness
Espionage
Bullying

Code & models:
https://github.com/yuvalpinter/Mimick
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