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1 Sub-problems

Following Cao et al.’s algorithm, we also consider
six sub-problems when we construct a maximum
dependency graph on a given interval [i,k] € V.
Because C' sub-problem is too complex and rare in
linguistic analysis, we ignore it in this algorithm.
What’s more, we use a flag to indicate whether
some edge exists or not and we still allow cross-
ing sub-problem to degenerate to Int sub-problem.
The sub-problems are explained as follows:

Int[i, j] It represents an interval from ¢ to j in-
clusively. And there is no edge e(; ;) such
that ¢’ € [i, j] and j' ¢ [i, j]. We further dis-
tinguish two types for Int. Intp[i, j] may or
may not contain edge e; ;y, while Intc|i, j]
contains e; ;).

i,7)

LR]Ji, j,x] It represents an interval from i to j
inclusively and an external vertex x. Vp €
(i,7),ptlx,p] = i or j. LRJi,j, x| disal-
low €(; ), €(z,i) OF €z j)- And eg ;) will
be captured in the procedure of generating
LRJi,j,x].

NJi, j,x] It represents an interval from i to j
inclusively and an external vertex x. Vp &€
(i,7), ptlz,p] & [i,j]. N could contain e; j)
but disallows e(,, ;). If there exists e(; ;, this
sub-problem should degenerate to Int sub-
problem. We further distinguish two types
for N. No[i,j, ] may or may not contian
€(z,5)- While Nc¢[i, j, z] disallows e(, ;) be-
cause it is captured in the procedure of gen-
erating N¢[i, 7, z).

L[, j,x] It represents an interval from i to j
inclusively as well as an external vertex z.
Vp € (i,j),ptlx,p] = i. L could contain
e(,j) but disallows e, ;). We further distin-
guish two types for L. Lo[i, 7, z] may or may

not contian e(,, ;. While L¢[i, j, ] disallows
€(z,j) because it is captured in the procedure
of generating L¢[i, j, z].

RJi,j,x] It represents an interval from ¢ to j
inclusively as well as an external vertex x.
Vp € (4,7),ptlr,p] = j. R disallows e(, j)
and e(, ;). We further distinguish two types
for R. Roli, j,x] may or may not contian
e(i,j)- While Rcli, j, z] disallows e(; ;) be-
cause it is captured in the procedure of gen-
erating Rc[i, j, x].

In this algorithm, we add all crossing edges during
decomposition and add noncrossing edges in Intc
for consideration of high-order.

2 Decomposing an Int Sub-problem

Consider Intpli, j| and Intc[i,j] sub-problem.
Because Intc[i, 7] is very similar to Into|i, j] and
needs to expand in second-order, we just show the
decomposition of Intc[i,j]. Assume that k €
[¢, 7] U is the farthest vertex from i that is linked
with 4, and z = pt[i, k] (z may be (). There are
some cases as following:

Case 1: No Arc From i Vertex k = () and z = 0.
We can remove ¢ and consider interval [i +
1,7]. Because there exist no edge from i to
some node in [z + 1, 7], interval [i + 1, 7] is
still an Intp. The problem is decomposed to
s Intoli + 1, 5] + €(i,5)-

Case 2: e(; i) is noncrossing Vertex k € (i, j)
and x = (). Obviously, [i, k] and [k, j] are still
Int since e(; ) is noncrossing. The problem
is decomposed to : Intc[i, k| + Intolk, j] +
E(i.5)-

Case 3: = € (k, j] In this case, €(;,k) Mmust be a
crossing edge. Vertex k and x divide the
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Figure 1: Decomposition for Int[i, j], with pt[i, k] = x.

interval [i,j] into three subparts: [i,k], [kx],
[x,j]. Because x may be 7, interval [x,j] may
only contain j and become an empty inter-
val. We define x’ as pencil point of all edges
from [i, k] to x, and divide this case into two
subproblems according to z’ as Cao et al.’s
algorithm.

First we assume there exist edges from k to
(z,j], so ' can only be k and pencil point
of edges from k to (x, j] is . Thus interval
[i, k] is an R with external vertex . What’s
more, [i, k] is an R¢ because we have cap-
tured e(; ). Any edge from within [k, 2] to an
external vertex violates 1-endpoint-crossing
restriction, thus interval [k,x] is an Into.
Since z is pencil point of edge from £ to
(z,j], interval [z, j] is an Lo with external
vertex k. In summary, we can decompose it
into Reli, k, x| + Intolk,z] + Lo[x, j, k] +
C(ik) T €Gd)-

Second we assume there is no edge from &
to [z, j], so 2’ can be i or k and [k,x], [x,j]
are Into. And the result is LR[i, k,z| +
Intolk, x] + Into[z, j] + e r) + € j)-

Case 4: x € (i, k) In this case, e(; ;) must also

be a crossing edge. Vertex k and x divide the
interval [i,j] into three subparts: [i,x], [x,k],
[k,jI-

First we assume there exist edges from ¢ to
(z,k), so pencil point of edges from z to

(k,j] is i. Thus interval [k, j] is an Np with
external vertex x because neither k£ nor j is
pencil point. And interval [, z] should be
Intop. Since x is pencil point of edges from
i to (x, k|, interval [z, k] is an L with exter-
nal vertex ¢. What’s more, [z, k| is an L¢
because we have captured e(; ;). And the
decomposition is Intoli,z] + Loz, k,i] +
Nolk, j,x] + €(i,k) T €(ij)-

Second we assume there is no edge from 1
to [z, k], but edge from & to [i, x], So pencil
point of edges from = to (k,j] is k. Thus
interval [k, j] is an Lo with external vertex x.
And interval [z, k| should be Into. Since x is
pencil point of edges from & to [i, z), interval
[i, ] is an Rp with external vertex k. And the
decomposition is Roli, z, k] + Intolx, k] +
Lolk,j,x] + €(i,k) T €(i,j5)-

For Intoli, j], because there may be e(; ;), we
should add one more decomposition Intp[i, j] =
Intcli, j], and we don’t need to add e(; ;) in all
cases.

3 Decomposing an N Sub-problem

Consider Noli, j,x] and N¢[i, j, x] subproblem.
And we show the decomposition of Np[i, 7, x].

Case 1: If there is no more edge from z to (i, j],
then it will degenerate to Intoli, j|.

Case 2: If there exists e, j), then it will reduced

to Nc[i,j, 1‘] + €(z,5)-



Case 3: If there is edge from x to (4,7), we de-
fine e, 1y (k € (4,7)) as the farthest edge
from 4 and it divides [¢, j] into [i, k] and [k, j].
Because neither 7 nor j is pencil point of
€(z,k)» [i, k] and [k, j] will be N¢[i, k, r] and
Intolk, j] respectively. The decompostion is
Ncliy k,x] + Intolk, j] + €(z,k)-

For N¢|i, j, ], we just ignore Case 2 and fol-
low the others.

Figure 2: Decomposition for Nz, j, x].

4 Decomposing an L. Sub-problem

Consider Loli, j, x] and L¢li, j, x] subproblem.
And we show the decomposition of Lo[i, 7, z].

Case 1: If there is no more edge from z to (i, j],
then it will degenerate to Intoli, j].

Case 2: If there exists e, j), then it will degener-

ate to Le[i, j, 2] + e(s.5)-

Case 3: If there is edge from x to (4,7), we de-

fine e(, 1) (K € (7,7)) as the farthest edge
from 4 and it divides [i,j] into [i, k] and
[k,j]. First, if there is an edge from x to
(i,k), [i, k] and [k, j] will be L¢[i, k, x] and
Nolk, j, ] respectively. The decomposition
is Lo[i, k,z] + Nolk, 7,i] + €(z,k)-
Second, if there is no edge from x to (i, k)
(€(a,k) 1s the last edge from z to (i, 7)), [i, K]
and [k, j] willbe Into[i, k] and Lok, j, 1] re-
spectively. The decomposition is Into|i, k]+
Lolk,j,i] + €(z,k)-

For L¢[i, 7, x], we justignore Case 2 and follow
the others.

5 Decomposing an R Sub-problem

Consider Roli, j, ] and Rc|i, j, ] subproblem.
And we show the decomposition of R i, 7, x].

Case 1: If there is no more edge from z to (i, j),
then it will degenerate to Into[i, j).

Case 2: If there exists e(; ), then it will reduce to
RC[ivja x] + €(i,5)-

Case 3: If there is edge from x to (4, j), we define
e(zk) (k € [1,j]) as the farthest edge from j
and it divides [7, j] into [¢, k] and [k, j]. First,
if there is edge from z to (k,j), [, k] and
[k, 4] will be Noli, k, j] and Rolk, j, x| re-
spectively. However, e, ;) will be calculated
twice following this decomposition. So we
define Noli, k, j] as a special N¢|i, k, j] to
disallow it generating ey, ;). The decomposi-
tion is Ne[i, k, j] + Rolk, j, z] + e 1)

Second, if there is no edge from z to
(k,7), [i, k] and [k, j] will be Roli, k, j] and
Intolk, j] respectively. The decomposition
is Roli, k, j| + Intolk, j] + €(z,k)-

For R¢li, j, x|, we can still ignore Case 2. Spe-
cially, we disallow R¢ to be Intc. Rc can only
be produced by Rp’s Case 2 and Int’s Case 3. For
Ro’s Case 2, Rp can be Into firstly and then be
Intc. For Int’s Case 3, we can use Int’s Case 2
directly to get Intc instead. So we don’t need to
degenerate R¢

6 Decomposing an LR Sub-problem

Because we don’t consider C' subproblem in Cao
et al., there must be a vertex k within [i, j] which
divides [z, j] into [i, k] and [k, j]. And i is the
pencil point of edges from z to (i,k] and j is
the pencil point of edges from z to (k,j). Ob-
viously, [¢,k] is an Lo and [k, j] is an Rp with
external x. Thus the problem is decomposed as
Loli, k,z] + Rolk, j, z].

Of course, either ¢ or j may not be a pencil
point. If the common pencil point of all edges
from x to (7, j) is 4, then the model is the same as
Loli, j, z]. Similarly, if the common pencil point
is 7, then the model is the same as R¢[i, 7, z]. And
if neither ¢ nor j is pencil point, it will be an Int
problem.

However, we don’t need to consider this two
special cases. If the common pencil point is only
i, 7 is the pencil point of edges from x to (7, k| but
there must be no edge from z to (k, j) and [k, j] is
an Int. Thus we can still use above decomposition
to express this case, just degenerate Rplk, j, z] to
Intolk, j]. If the common pencil point is j, this
case is equal to Int’s Case3.1. If neither ¢ or j is
pencil point, this case is equal to Int’s Case?2.
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Figure 5: Decomposition for LR][i, j, z].

7 Complexity and summary

We discuss each subproblem by enumerating dif-
ferent cases to get only one edge at once. Int sub-
problem can decompose by discussing whether
has a crossing arc and position of its pencil point.
For LR subproblem, we simplify the decomposi-
tion and ignore C' subproblem. For other crossing
problem, we consider whether it can degenerate
and the number of arcs from z to (7, j). Obviously,
this algorithm has the same time and space com-
plexity with Cao et al.’s degenerated algorithm.
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Figure 4: Decomposition for R[i, j, z].



