Details of the First-Order Parsing Algorithm

Junjie Cao, Sheng Huang, Weiwei Sun and Xiaojun Wan

Institute of Computer Science and Technology, Peking University The MOE Key Laboratory of Computational Linguistics, Peking University {junjie.cao,huangsheng,ws,wanxiaojun}@pku.edu.cn

1 Sub-problems

Following Cao et al.'s algorithm, we also consider six sub-problems when we construct a maximum dependency graph on a given interval $[i, k] \in V$. Because C sub-problem is too complex and rare in linguistic analysis, we ignore it in this algorithm. What's more, we use a flag to indicate whether some edge exists or not and we still allow crossing sub-problem to degenerate to Int sub-problem. The sub-problems are explained as follows:

- Int[i, j] It represents an interval from i to j inclusively. And there is no edge $e_{(i',j')}$ such that $i' \in [i, j]$ and $j' \notin [i, j]$. We further distinguish two types for Int. $Int_O[i, j]$ may or may not contain edge $e_{(i,j)}$, while $Int_C[i, j]$ contains $e_{(i,j)}$.
- LR[i, j, x] It represents an interval from i to jinclusively and an external vertex x. $\forall p \in$ (i, j), pt[x, p] = i or j. LR[i, j, x] disallow $e_{(i,j)}, e_{(x,i)}$ or $e_{(x,j)}$. And $e_{(i,j)}$ will be captured in the procedure of generating LR[i, j, x].
- N[i, j, x] It represents an interval from i to jinclusively and an external vertex x. $\forall p \in$ $(i, j), pt[x, p] \notin [i, j]$. N could contain $e_{(i,j)}$ but disallows $e_{(x,i)}$. If there exists $e_{(i,j)}$, this sub-problem should degenerate to Int subproblem. We further distinguish two types for N. $N_O[i, j, x]$ may or may not contian $e_{(x,j)}$. While $N_C[i, j, x]$ disallows $e_{(x,j)}$ because it is captured in the procedure of generating $N_C[i, j, x]$.
- L[i, j, x] It represents an interval from *i* to *j* inclusively as well as an external vertex *x*. $\forall p \in (i, j), pt[x, p] = i$. *L* could contain $e_{(i,j)}$ but disallows $e_{(x,i)}$. We further distinguish two types for L. $L_O[i, j, x]$ may or may

not contian $e_{(x,j)}$. While $L_C[i, j, x]$ disallows $e_{(x,j)}$ because it is captured in the procedure of generating $L_C[i, j, x]$.

R[i, j, x] It represents an interval from i to jinclusively as well as an external vertex x. $\forall p \in (i, j), pt[x, p] = j$. R disallows $e_{(x,j)}$ and $e_{(x,i)}$. We further distinguish two types for R. $R_O[i, j, x]$ may or may not contian $e_{(i,j)}$. While $R_C[i, j, x]$ disallows $e_{(i,j)}$ because it is captured in the procedure of generating $R_C[i, j, x]$.

In this algorithm, we add all crossing edges during decomposition and add noncrossing edges in Int_C for consideration of high-order.

2 Decomposing an Int Sub-problem

Consider $Int_O[i, j]$ and $Int_C[i, j]$ sub-problem. Because $Int_C[i, j]$ is very similar to $Int_O[i, j]$ and needs to expand in second-order, we just show the decomposition of $Int_C[i, j]$. Assume that $k \in$ $[i, j] \cup \emptyset$ is the **farthest** vertex from *i* that is linked with *i*, and x = pt[i, k] (*x* may be \emptyset). There are some cases as following:

- **Case 1: No Arc From i** Vertex $k = \emptyset$ and $x = \emptyset$. We can remove *i* and consider interval [i + 1, j]. Because there exist no edge from *i* to some node in [i + 1, j], interval [i + 1, j] is still an Int_O . The problem is decomposed to $: Int_O[i + 1, j] + e_{(i,j)}$.
- **Case 2:** $e_{(i,k)}$ is noncrossing Vertex $k \in (i, j)$ and $x = \emptyset$. Obviously, [i, k] and [k, j] are still Int since $e_{(i,k)}$ is noncrossing. The problem is decomposed to : $Int_C[i, k] + Int_O[k, j] + e_{(i,j)}$.
- **Case 3:** $x \in (k, j]$ In this case, $e_{(i,k)}$ must be a crossing edge. Vertex k and x divide the

Figure 1: Decomposition for Int[i, j], with pt[i, k] = x.

interval [i,j] into three subparts: [i,k], [k,x], [x,j]. Because x may be j, interval [x,j] may only contain j and become an empty interval. We define x' as pencil point of all edges from [i, k] to x, and divide this case into two subproblems according to x' as Cao et al.'s algorithm.

First we assume there exist edges from k to (x, j], so x' can only be k and pencil point of edges from k to (x, j] is x. Thus interval [i, k] is an R with external vertex x. What's more, [i, k] is an R_C because we have captured $e_{(i,k)}$. Any edge from within [k, x] to an external vertex violates 1-endpoint-crossing restriction, thus interval [k, x] is an Int_O . Since x is pencil point of edge from k to (x, j], interval [x, j] is an L_O with external vertex k. In summary, we can decompose it into $R_C[i, k, x] + Int_O[k, x] + L_O[x, j, k] + e_{(i,k)} + e_{(i,j)}$.

Second we assume there is no edge from k to [x, j], so x' can be i or k and [k,x], [x,j] are Int_O . And the result is $LR[i, k, x] + Int_O[k, x] + Int_O[x, j] + e_{(i,k)} + e_{(i,j)}$.

Case 4: $x \in (i, k)$ In this case, $e_{(i,k)}$ must also be a crossing edge. Vertex k and x divide the interval [i,j] into three subparts: [i,x], [x,k], [k,j].

First we assume there exist edges from i to (x, k), so pencil point of edges from x to

(k, j] is *i*. Thus interval [k, j] is an N_O with external vertex *x* because neither *k* nor *j* is pencil point. And interval [i, x] should be Int_O . Since *x* is pencil point of edges from *i* to (x, k], interval [x, k] is an *L* with external vertex *i*. What's more, [x, k] is an L_C because we have captured $e_{(i,k)}$. And the decomposition is $Int_O[i, x] + L_C[x, k, i] +$ $N_O[k, j, x] + e_{(i,k)} + e_{(i,j)}$.

Second we assume there is no edge from i to [x, k], but edge from k to [i, x], So pencil point of edges from x to (k, j] is k. Thus interval [k, j] is an L_O with external vertex x. And interval [x, k] should be Int_O . Since x is pencil point of edges from k to [i, x), interval [i, x] is an R_O with external vertex k. And the decomposition is $R_O[i, x, k] + Int_O[x, k] + L_O[k, j, x] + e_{(i,k)} + e_{(i,j)}$.

For $Int_O[i, j]$, because there may be $e_{(i,j)}$, we should add one more decomposition $Int_O[i, j] = Int_C[i, j]$, and we don't need to add $e_{(i,j)}$ in all cases.

3 Decomposing an N Sub-problem

Consider $N_O[i, j, x]$ and $N_C[i, j, x]$ subproblem. And we show the decomposition of $N_O[i, j, x]$.

- **Case 1:** If there is no more edge from x to (i, j], then it will degenerate to $Int_O[i, j]$.
- **Case 2:** If there exists $e_{(x,j)}$, then it will reduced to $N_C[i, j, x] + e_{(x,j)}$.

Case 3: If there is edge from x to (i, j), we define $e_{(x,k)}$ $(k \in (i, j))$ as the **farthest** edge from i and it divides [i, j] into [i, k] and [k, j]. Because neither i nor j is pencil point of $e_{(x,k)}$, [i, k] and [k, j] will be $N_C[i, k, x]$ and $Int_O[k, j]$ respectively. The decomposition is $N_C[i, k, x] + Int_O[k, j] + e_{(x,k)}$.

For $N_C[i, j, x]$, we just ignore Case 2 and follow the others.

Figure 2: Decomposition for N[i, j, x].

4 Decomposing an L Sub-problem

Consider $L_O[i, j, x]$ and $L_C[i, j, x]$ subproblem. And we show the decomposition of $L_O[i, j, x]$.

- **Case 1:** If there is no more edge from x to (i, j], then it will degenerate to $Int_O[i, j]$.
- **Case 2:** If there exists $e_{(x,j)}$, then it will degenerate to $L_C[i, j, x] + e_{(x,j)}$.
- **Case 3:** If there is edge from x to (i, j), we define $e_{(x,k)}$ $(k \in (i, j))$ as the farthest edge from i and it divides [i, j] into [i, k] and [k, j]. First, if there is an edge from x to (i, k), [i, k] and [k, j] will be $L_C[i, k, x]$ and $N_O[k, j, i]$ respectively. The decomposition is $L_C[i, k, x] + N_O[k, j, i] + e_{(x,k)}$.

Second, if there is no edge from x to (i, k) $(e_{(x,k)}$ is the last edge from x to (i, j)), [i, k]and [k, j] will be $Int_O[i, k]$ and $L_O[k, j, i]$ respectively. The decomposition is $Int_O[i, k] + L_O[k, j, i] + e_{(x,k)}$.

For $L_C[i, j, x]$, we just ignore Case 2 and follow the others.

5 Decomposing an R Sub-problem

Consider $R_O[i, j, x]$ and $R_C[i, j, x]$ subproblem. And we show the decomposition of $R_O[i, j, x]$.

- **Case 1:** If there is no more edge from x to (i, j), then it will degenerate to $Int_O[i, j]$.
- **Case 2:** If there exists $e_{(i,j)}$, then it will reduce to $R_C[i, j, x] + e_{(i,j)}$.

Case 3: If there is edge from x to (i, j), we define $e_{(x,k)}$ $(k \in [i, j])$ as the farthest edge from j and it divides [i, j] into [i, k] and [k, j]. First, if there is edge from x to (k, j), [i, k] and [k, j] will be $N_O[i, k, j]$ and $R_O[k, j, x]$ respectively. However, $e_{(k,j)}$ will be calculated twice following this decomposition. So we define $N_O[i, k, j]$ as a special $N_C[i, k, j]$ to disallow it generating $e_{(k,j)}$. The decomposition is $N_C[i, k, j] + R_O[k, j, x] + e_{(x,k)}$.

Second, if there is no edge from x to (k, j), [i, k] and [k, j] will be $R_O[i, k, j]$ and $Int_O[k, j]$ respectively. The decomposition is $R_O[i, k, j] + Int_O[k, j] + e_{(x,k)}$.

For $R_C[i, j, x]$, we can still ignore Case 2. Specially, we disallow R_C to be Int_C . R_C can only be produced by R_O 's Case 2 and Int's Case 3. For R_O 's Case 2, R_O can be Int_O firstly and then be Int_C . For Int's Case 3, we can use Int's Case 2 directly to get Int_C instead. So we don't need to degenerate R_C

6 Decomposing an LR Sub-problem

Because we don't consider C subproblem in Cao et al., there must be a vertex k within [i, j] which divides [i, j] into [i, k] and [k, j]. And i is the pencil point of edges from x to (i, k] and j is the pencil point of edges from x to (k, j). Obviously, [i, k] is an L_O and [k, j] is an R_O with external x. Thus the problem is decomposed as $L_O[i, k, x] + R_O[k, j, x]$.

Of course, either *i* or *j* may not be a pencil point. If the common pencil point of all edges from x to (i, j) is *i*, then the model is the same as $L_O[i, j, x]$. Similarly, if the common pencil point is *j*, then the model is the same as $R_C[i, j, x]$. And if neither *i* nor *j* is pencil point, it will be an *Int* problem.

However, we don't need to consider this two special cases. If the common pencil point is only i, i is the pencil point of edges from x to (i, k] but there must be no edge from x to (k, j) and [k, j] is an Int. Thus we can still use above decomposition to express this case, just degenerate $R_O[k, j, x]$ to $Int_O[k, j]$. If the common pencil point is j, this case is equal to Int's Case3.1. If neither i or j is pencil point, this case is equal to Int's Case2.

Figure 3: Decomposition for L[i, j, x].

Figure 4: Decomposition for R[i, j, x].

Figure 5: Decomposition for LR[i, j, x].

7 Complexity and summary

We discuss each subproblem by enumerating different cases to get only one edge at once. Int subproblem can decompose by discussing whether ihas a crossing arc and position of its pencil point. For LR subproblem, we simplify the decomposition and ignore C subproblem. For other crossing problem, we consider whether it can degenerate and the number of arcs from x to (i, j). Obviously, this algorithm has the same time and space complexity with Cao et al.'s degenerated algorithm.

References

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiaojun Wan. 2017. Parsing to 1-endpoint-crossing, pagenumber-2 graphs. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics.