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Overview
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 Self-disclosure (SD)
 Definition from social psychology
 Relations with social dynamics
 Limitations in previous research

 Computational approaches for self-disclosure
 Twitter conversation dataset
 Self-disclosure topic model (SDTM)

 Self-disclosure & Social dynamics
 Self-disclosure and conversation length over time
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 The verbal expressions by which a person reveals aspects of 
self to others [Jourard1971b]

 Process of making the self known to others [Jourard&Lasakow1958]

Self-disclosure: Definition
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Self-disclosure: Level
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Self-disclosure level [Vondracek et al.1971, Barak et al.2007]

 General level (No disclosure)
 Medium level (Medium disclosure)
 High level (High disclosure)



Self-disclosure: G level
 General information and ideas
 No information about self or someone close to him
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Self-disclosure: M level
 General information about self or someone close to him
 Personal events, age, occupation and family members

8 2014-10-28



Self-disclosure: H level
 Sensitive information about self or someone close to him
 Problematic behaviors of self and family members
 Physical appearance, health, death, sexual topics
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Self-disclosure: Relations
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Human relationship
 Degree of self-disclosure in a relationship depends on the 

strength of the relationship [Duck2007]

 Strategic self-disclosure can strengthen the relationship 



Self-disclosure: Relations
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Benefits
 Can get social support from others [Derlega et al.1993] 

 Can cope with stress [Derlega et al.1993,Tamir and Mitchell2012]

 Examples



Limitations in Previous Works
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 Survey
 Asking questions to participants
 Cons) Biased by participants memory

 Hand coding
 Analyzing dataset by human
 Cons) Cannot apply to large dataset



Limitations in Previous Works

2014-10-2812

 Survey
 Asking questions to participants
 Cons) Biased by participants memory

 Hand coding
 Analyzing dataset by human
 Cons) Cannot apply to large dataset

 Lab environment
 Experiments held in lab or artificial environment
 Cons) Not real/naturally occurring dataset



Research Questions
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 How can we find self-disclosure in large & naturally 
occurring corpus automatically?



Research Questions
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 How can we find self-disclosure in large & naturally 
occurring corpus automatically?

 What are relations between self-disclosure and social 
dynamics in large & naturally occurring corpus?



Twitter Conversations



Conversation in Twitter
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https://twitter.com/britneyspears

https://twitter.com/NoSyu

https://twitter.com/britneyspears
https://twitter.com/NoSyu


Conversation Topics
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Users discuss several topics with others

Soccer Politics



Conversation Topics
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Users discuss several topics with others

Places Family



Twitter Conversations
 A Twitter conversation
 5 or more tweets 
 At least one reply by each user

https://twitter.com/britneyspears

Example of a Twitter conversation
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Twitter Conversations
 A Twitter conversation
 5 or more tweets 
 At least one reply by each user

 Twitter conversation data
 Aug 2007 to Jul 2013
 102K users
 2M conversations
 17M tweets

https://twitter.com/britneyspears

Example of a Twitter conversation
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https://twitter.com/britneyspears


Self-disclosure Topic Model 
(SDTM)



Challenges for SD research
 Lack of ground-truth dataset of SD level
 No tagged dataset for Twitter conversation
 No accessible self-disclosure datasets
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Challenges for SD research
 Lack of ground-truth dataset of SD level
 No tagged dataset for Twitter conversation
 No accessible self-disclosure datasets

 Lack of study about SD in computational linguistics
 Definitions and examples in social psychology
 Survey or hand-coding
 Related word categories in LIWC [Houghton2012]
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Ground-truth Dataset
 Process
 Sample 301 random 

Twitter conversations
 Ask it to three judges
 Tag self-disclosure level
 Work on a web-based platform

27
Screenshot of annotation web-based platform
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Ground-truth Dataset
 Process
 Sample 301 random 

Twitter conversations
 Ask it to three judges
 Tag self-disclosure level
 Work on a web-based platform

 Result
 Tagged G: 122, M: 147, H: 32 

conversations
 Fleiss kappa: 0.68

27
Screenshot of annotation web-based platform
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Assumptions: First person pronouns
First person pronouns are good indicators for self-disclosure
 Ex) ‘I’, ‘My’
 Used in previous research [Joinson et al.2001, Barak et al.2007]
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Assumptions: First person pronouns
First person pronouns are good indicators for self-disclosure
 Ex) ‘I’, ‘My’
 Observed as highly discriminative features between G and M/H in 

annotated dataset
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Unigram Bigram Trigram

my I love I have a

I I was is going to

I’m I have to go to

but my dad want to go

was go to and I was

I’ve my mom going to miss
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Assumptions: Topics
M and H level have different topics
 [General vs Sensitive] information about self or intimate
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Assumptions: Topics
Self-disclosure related topics by LDA [Bak2012]

Location Time Adult Health Family Profanity

san tonight pants teeth family nigga

live time wear doctor brother lmao

state tomorrow boobs dr sister shit

texas good naked dentist uncle ass

south ill wearing tooth cousin bitch
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Assumptions: Topics
M and H level have different topics
 [General vs Sensitive] information about self or intimate
 Can be formalized as topics

 Personally Identifiable Information 
 General information about self
 Ex) name, location, email address, job, …

 Secrets
 Sensitive information about self
 Ex) physical appearance, health, sexuality, death, …
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Graphical model of Self-Disclosure Topic Model

Self-Disclosure Topic Model (SDTM)
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Graphical model of Self-Disclosure Topic Model

Self-Disclosure Topic Model (SDTM)
 Classifying G and M/H level
 Maximum entropy classifier
 Observed first-person pronouns
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Graphical model of Self-Disclosure Topic Model

Self-Disclosure Topic Model (SDTM)
 Classifying G and M/H level
 Maximum entropy classifier
 Observed first-person pronouns

 Classifying M and H level
 Seed words for each level 
 Observed words
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Self-Disclosure Topic Model (SDTM)
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Rough figure of how to infer self-disclosure in SDTM
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Rough figure of how to infer self-disclosure in SDTM
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Maximum Entropy Classifier
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 Learned from annotated dataset
 Works better than others 

(C4.5, Naïve Bayes, SVM with linear kernel, polynomial kernel 
and radial basis)

 Used to identify aspect and opinions in topic model [Zhao2010]



Seed Words
Seed words are prior knowledge for each level
 G level
 No seed words (symmetric prior)

 M level
 Data-driven approach in Twitter conversation

 H level
 Data-driven approach from external dataset

36 2014-10-28



Seed Words
 M level
 Data-driven approach

 Use Twitter conversation dataset

 Get frequently occurred trigram that begin with ‘I’ and ‘my’
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Seed Words
 M level
 Data-driven approach

 Use Twitter conversation dataset

 Get frequently occurred trigram that begin with ‘I’ and ‘my’

 Example seed words

37

Name Birthday Location Occupation

My name is My birthday is I live in My job is

My last name My birthday party I lived in My new job

My real name My bday is I live on My high school

2014-10-28



Seed Words
 H level
 Data-driven approach

 Use external dataset (Six Billion Secrets)
 http://www.sixbillionsecrets.com
 Users write and share his/her secrets
 26,523 posts

 Extract high ranked word features

38 2014-10-28

Example of secret posts in Six Billion Secrets

http://www.sixbillionsecrets.com/


Seed Words
 H level
 Data-driven approach

 Use external dataset (Six Billion Secrets)
 http://www.sixbillionsecrets.com
 Users write and share his/her secrets
 26,523 posts

 Extract high ranked word features

Example seed words

38

Physical appearance Health condition Death

chubby addicted dead
fat surgery died

scar syndrome suicide
acne disorder funeral

2014-10-28

Example of secret posts in Six Billion Secrets

http://www.sixbillionsecrets.com/


Classifying Performance
 Data
 Annotated Twitter conversation
 80/20 train/test randomly
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Classifying Performance
 Data
 Annotated Twitter conversation
 80/20 train/test randomly

 Methods
 BOW+

Bag of Words + Bigrams + Trigrams features
 FirstP

First-person pronouns features
 SEED

Seed words and trigrams features
 FirstP+SEED

FirstP and SEED feature
 SDTM

Self-disclosure Topic Model
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Classifying Performance
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Classifying Performance
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Classifying Performance
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Classifying Performance
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Classifying Performance
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Classifying Performance
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Self-disclosure & Social dynamics



Research Questions
Q1) Does high self-disclosure lead to longer conversations?
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Research Questions
Q2) Is there difference in conversation length patterns over 
time depending on overall self-disclosure level?
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High SD level dyad

Low SD level dyad



Results
High ranked topics in each level (G, M, H levels)

Shown by high probability words in each topic

G 1 G 2 M 1 M 2 H 1 H 2

obama league send going better ass

he’s win email party sick bitch

romney game i’ll weekend feel fuck

vote season sent day throat yo

right team dm night cold shit

president cup address dinner hope fucking
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Results
Q1) Does high self-disclosure lead to longer conversations?
Ans) Positive relations between initial SD level and changes CL
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Results
Q2) Is there difference in CL patterns over time by overall SD level?

Ans) ‘high’ and ‘mid’ groups increase CL over time, not ‘low’

‘high’ groups talk more in a conversation than ‘mid’ & ‘low’ groups
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Contributions
 Made ground-truth Twitter conversation dataset for SD level
 Made first annotated Twitter conversations for SD level
 Share it with researchers

 Suggested novel method for identifying SD level (SDTM)
 Our assumptions are reasonable and verified by experiments
 SDTM performs better than others

 Showed relations between SD & social dynamics
 Strategic self-disclosure can strengthen the relationship

supported by Twitter conversation dataset and SDTM
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Future Work
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Self-disclosure for a user general messages
 Self-disclosure is related with 

 Loneliness [Al-Saggaf.2014] 

 Online social network usage [Trepte2013]

 We can predict user’s
 Loneliness and give a social support

 Usage patterns and give a feedback
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Thank you!
Any questions or comments?

JinYeong Bak
jy.bak@kaist.ac.kr

Department of Computer Science, KAIST
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