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1 RNN Encoder-Decoder

In this document, we describe in detail the architecture of the RNN Encoder—Decoder used in the
experiments.

Let us denote an source phrase by X = (xX,Xg,...,Xy) and a target phrase by YV =
(¥1,¥2,.-.,¥m). Each phrase is a sequence of K-dimensional one-hot vectors, such that only
one element of the vector is 1 and all the others are 0. The index of the active (1) element indicates
the word represented by the vector.

1.1 Encoder

Each word of the source phrase is embedded in a 500-dimensional vector space: e(x;) € R5%. ¢(x)
is used in Sec. £ 4 to visualize the words.

The hidden state of an encoder consists of 1000 hidden units, and each one of them at time ¢ is
computed by
t t—1 St
W = 28 4 (1 - )R,
where

A{ = tanh ([We(xt)]j +rj [Uh<t_1>]> :
2 =0 ([Wee(x)l, + [Ushion)], )

rj =o <[Wr€(xt)]j + [U’“h“_”]j) '

o is a logistic sigmoid function. To make the equations uncluttered, we omit biases. The initial
hidden state h]@ is fixed to O.

Once the hidden state at the N step (the end of the source phrase) is computed, the representation of
the source phrase c is

c = tanh (Vh<N>) .

1.1.1 Decoder
The decoder starts by initializing the hidden state with
n'% = tanh (V'c),



where we will use - to distinguish parameters of the decoder from those of the encoder.
The hidden state at time ¢ of the decoder is computed by
)

7

h/J<-t> = Z/jh,/‘g-t71> + (]. — le)l’;/
where

4 =tanh ([W’e(yt_l)] +0'; [U'W 4y, + Cc]

1)
5 =o (IW'-elye)], + U0y, + [Cael, ).
T,j =0 ([W/re(}’t—l)] [U hl(t 1)] [C C] )

and e(yyg) is an all-zero vector. Similarly to the case of the encoder, e(y) is an embedding of a target
word.

Unlike the encoder which simply encodes the source phrase, the decoder is learned to generate a
target phrase. At each time ¢, the decoder computes the probability of generating j-th word by

exp (g;5())
Soi_y exp (g575())

P(yt,j =1 \ Yi1,---,¥1,X) =

)

where the i-element of sy is
o = ma {5,447
and
' = 0,0 + 0,y,1 + O.c.

In short, the s§t> is a so-called maxout unit.

For the computational efficiency, instead of a single-matrix output weight G, we use a product of
two matrices such that

G = GlGr7
where Gl c RK %500 and G'r c R500% 1000

2  Word and Phrase Representations

Here, we show enlarged plots of the word and phrase representations in Figs.
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Figure 1: 2-D embedding of the learned word representation. The top left one shows the full embedding space, while the other three figures show the zoomed-in
view of specific regions (color—coded).
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Figure 2: 2-D embedding of the learned phrase representation. The top left one shows the full representation space (1000 randomly selected points), while the
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other three figures show the zoomed-in view of specific regions (color—coded).
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