Supplementary Material

In this document we give proofs for propositions (1) and (2) in the main pa-
per. We use a slightly different notation for simplicity. We give a constructive
proof for Proposition (2) that inherently implies Proposition (1). In the follow-
ing section we give the necessary definitions and define the proximal operator
for ¢Z -norm followed by proof in the next section.

1 Definitions

Let us consider a tree-structured set of groups of variables G, which are subsets
of {1,...,p}. The tree-structure definition follows [I], where two groups g and
g’ are either disjoint or one is included in the other.

Definition 1 (Tree-structured set of groups).

A set of groups G £ {g},eg is said to be tree-structured in {1,...,p}, ingeg g=
{1,...,p} and if for all g, h € G, gNh =10, or g C h, or h C g. We also define
for each group g,

e the set of variables root(g) C g is such that i € root(g) is not in g’ for all
group g’ C g;

e the set of groups children(g) is the set of groups g’ such that ¢’ C g.

We are now interested in the following optimization problem
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Following [I], it can be solved by Algorithm |1| where IT) is the Euclidean pro-
jection on the £1-ball of radius A.

Lemma 1 (Equivalent Views of the /,-proximal Operator).
Let us consider the prozimal operator Prox:
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Then,
[Proz3(w)]y = ug — I1x(uy), (2)



Algorithm 1 Computation of the Proximal Operator.

Inputs: u € R? and an ordered tree-structured set of groups G with root gq.
Initialization: w < u;
Call recursiveProx(go);
Return w.
Procedure recursiveProx(g)

1: for h € child(g) do

2:  Call recursiveProx(h);

3: end for

40 Wy wy — I (wy).

and there exists T > 0 such that for all j € g,

[Prozi (u)]; = sign(u;) min(ju;|,7) and (3)
1Ty (u,)])1 :Zmax(|uj|f7',0):)\ or T=0p. (4)

Proof. The proof of Eq. can be found in [I]. The proof of Eq. consists of
noticing that the projection on the ¢;-ball is obtained by a soft-thresholding op-
erator [I]. In other words, there exists 7 > 0 such that [II(u)]; = sign(u;) max(|u;|—
7,0) for all j in g. We notice that by definition of the Euclidean projection, ei-
ther |[IIx(ug)|li < A and II)(uy) = uy (meaning 7 = 0), or |[IIx(uy)|1 = A.
This yields . O

By using the definition of Proxy, we see that Algorithm [1|in fact performs a
composition of proximal operators. Suppose that the groups in G = {g1,..., 9k}
are ordered according to depth-first search order, we have

Prox,g = Prox% o ... o Prox?',

where () is the tree-structured penalty Q(w) = > [[Wg[loo, and o is a com-
position operator.

We now have the following (Proposition 2 of main paper) to compose prox-
imal step over constant value non-branching paths or nested groups. We prove
this by showing that in consecutive projections the 7 in [3| can only be smaller
than the previous one forcing the values along a non-branching path to be equal.

Lemma 2 (Composition Lemma Along Nested Groups).
Assume that for all groups g in G, root(g) is a singleton {r(g)}. Consider a
particular group g with a single child g', such that w,(g) = W.(4. Then,

(Pro:c;]\ o Pro:ci/) (u) = Prozj, (u).



Proof. Without loss of generality, let us assume that all the entries of u are
non-negative. Indeed, it is sufficient to store beforehand the signs of that vec-
tor, compute the proximal operator of the vector with nonnegative entries, and
assign the stored signs to the result [I]. We also have

[(Proxg\ o Prox§/> (u)] = [Proxj,(u)]. =u; forall j¢g,

j J
since all the proximal operators only affect the variables in g and ¢’. Let us now
define v £ Prox{ (u), w* £ Prox{ (v)

Consider 7/ defined in Lemma (1} such that v, = min(uy,7’), and 7 such
that wj = min(v,,7).

First step: 7 < 7':

Let us proceed by contradiction and assume that 7/ < 7. Then, we have vy <7
and thus, Eq. applied to the group g gives us that u,g) —7 = v,(g) =7 = A
since 7 # 0 and g = ¢’ U {r(g)}. Note also that u,z) — 7" < [[TIx(ug)[|1 < A
according to Eq. applied to the group g’. Since u,(,) = u,(,, we have
U, (g) — 7 < Uy — 7, and 7 < 7/, which is a contradiction.

End of the proof:

By using Eq. , and using the fact that 7 < 7/, we now have a closed form

solution for w;:

*
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min(ug, 7).
We now consider two cases

e if 7 =0, we have w; = 0, and thus v, = I, (v, ), meaning that |[vy|1 < A.
Thus, [ugly = [lvglli + [[lug = vglls < A+ [HA(ug)[li < 2A. Thus,
[Prox, (w)]y = 0= w3:

e if 7 > 0, we define the quantity z, = u, — w; = max(u, — 7,0), which
has the form of an orthogonal projection of u, onto the ¢;-ball of some
radius X' (see [1]). It remains to compute ||z4][1 to know the radius of X
We have

12l = llug=wglly = lug—vy+vo—willi = [ug —vy [i+]vy—wgl = 24,

where we apply again Eq. . Thus, z, = [z (u,y) and wj = Proxj, (u)],
by using Eq. (2)).

O

This proof can be put together for paths with more than two nested groups
to inductively construct single-step proximal projections for longer paths.

It is easy to see from this definition [4] that all entries with the same value
uj = 0Vj will continue to share a value after applying the proximal operator
min(d, 7). We see from [2| that all entries at nested groups will be projected to
the same value. This in fact turns out to be a single projection with the A scaled
appropriately. These two put together we have the property that constant value
non-branching paths are preserved.
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