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Abstract

Inferring attributes of discourse participants
has been treated as a batch-processing task:
data such as all tweets from a given author
are gathered in bulk, processed, analyzed for
a particular feature, then reported as a result
of academic interest. Given the sources and
scale of material used in these efforts, along
with potential use cases of such analytic tools,
discourse analysis should be reconsidered as
a streaming challenge. We show that un-
der certain common formulations, the batch-
processing analytic framework can be decom-
posed into a sequential series of updates, us-
ing as an example the task of gender classifi-
cation. Once in a streaming framework, and
motivated by large data sets generated by so-
cial media services, we present novel results in
approximate counting, showing its applicabil-
ity to space efficient streaming classification.

1 Introduction

The rapid growth in social media has led to an
equally rapid growth in the desire to mine it for use-
ful information: the content of public discussions,
such as found in tweets, or in posts to online forums,
can support a variety of data mining tasks. Infer-
ring the underlying properties of those that engage
with these platforms, the discourse participants, has
become an active topic of research: predicting indi-
vidual attributes such as age, gender, and political
preferences (Rao et al., 2010), or relationships be-
tween communicants, such as organizational domi-
nance (Diehl et al., 2007). This research can bene-
fit areas such as: (A) commercial applications, e.g.,

improved models for advertising placement, or de-
tecting fraudulent or otherwise unhelpful product re-
views (Jindal and Liu, 2008; Ott et al., 2011); and
(B) in enhanced models of civic discourse, e.g., in-
expensive, large-scale, passive polling of popular
opinion (O’Connor et al., 2010).

Classification with streaming data has usually
been taken in the computational linguistics commu-
nity to mean individual decisions made on items that
are presented over time. For example: assigning
a label to each newly posted product review as to
whether it contains positive or negative sentiment,
or whether the latest tweet signals a novel topic that
should be tagged for tracking (Petrovic et al., 2010).

Here we consider a distinct form of stream-based
classification: we wish to assign, then dynamically
update, labels on discourse participants based on
their associated streaming communications. For in-
stance, rather than classifying individual reviews as
to their sentiment polarity, we might wish to classify
the underlying author as to whether they are gen-
uine or paid-advertising, and then update that deci-
sion as they continue to post new reviews. As the
scale of social media continues to grow, we desire
that our model be aggressively space efficient, which
precludes a naive solution of storing the full commu-
nication history for all users.

In this paper we make two contributions: (1) we
make explicit that a standard bag-of-words classifi-
cation model for predicting latent author attributes
can be simply decomposed into a series of stream-
ing updates; then (2) show how the randomized al-
gorithm, Reservoir Counting (Van Durme and Lall,
2011), can be extended to maintain approximate av-



erages, allowing for significant space savings in our
classification model. Our running example task is
gender prediction, based on spoken communication
and microblogs/Twitter feeds.

2 Model

Assume that each discourse participant (e.g.,
speaker, author) a has an associated stream of com-
munications (e.g., tweets, utterances, emails, etc.):
(¢;) = C. Then let C¢ = (ci, ..., ct) represent the
first ¢ elements of C.

Assume access to a pretrained classifier ®:!

(a) = 1 ifw-f.(C)ZO,

0 otherwise,

which we initially take to be linear: author labels are
determined by computing the sign of the dot product
between a weight vector w, and feature vector f(C'),
each of dimension d. Note that f(C) is a feature
vector over the entire set of communications from a
given author.

For example, & might be trained to classify author

gender:
Gender(a) — { Male if w - f(C) >0,
Female otherwise.

We now make explicit how under certain common
restrictions on the feature space, the classification
decision can be decomposed into a series of decision
updates over the elements of C.

Define f(c;) to be the vector containing the lo-
cal, count-based feature values of communication
cj.> For convenience let us assume that flei) e Ne.
Where |v|; = ), |v;] is the L1-norm of vector v, let
z; be the normalizing constant at t:

t
2= 1feh
i=1
Now define f;(C), the j-th entry of f(C), as:
> i1 fj(Cz‘)

Zn

fi(C) =

Thus f(C) represents the global relative fre-
quency of each local, count-based feature. This al-
lows us to rearrange terms:

"While here we assume binary decision tasks, dynamic clas-
sification in a multiclass, or regression, setting is an interesting
avenue of exploration, for which these definitions generalize.

2As seen later in Table 1, we have in mind features such as
the frequency of the n-gram my wife.

n d
= (S w i)
=1 j=1

Let (s¢, z¢) be the current state of the classifier:

td
(s, 20) = O ) wj filey), z1)

i=1 j=1

which pairs the observed rolling sum, s; with the
feature stream length z;.

The classifier decision after seeing everything up
to and including communication ¢; is thus a simple

average:
1 if & >0,
Zt

) =
(@) { 0 otherwise.
Finally we reach the observation that:

St = S—1tw- f(Ct)

2 = 21+ |fle)h

which means that from an engineering standpoint we
can process a stream of communication one element
at a time, without the need to preserve the history
explicitly. That is: for each author, for each attribute
being analyzed, an online system only need main-
tain a state pair (s, z;) by extracting and weighting
features locally for each new communication. Be-
yond the computational savings of not needing to
store communications nor explicit feature vectors in
memory, there are potential privacy benefits as well:
analytic systems need not have a lasting record of
discourse, they can instead glean whatever signal is
required locally in the stream, and then discard the
actual communications.

Log-linear Rather than a strictly linear ®, such as

instantiated via perceptron or SVM with linear ker-

nel, many prefer log-linear models as their classifi-
cation framework:

1 ife0——or- 1

B(a) = { Trem(~w 7))

0 otherwise.

> 0.5,
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Figure 1: A streaming analytic model should update its decision with each new communication, becoming more

stable in its prediction as evidence is acquired.

In either setting, the state of the classifier is suf-
ficiently captured by the pair (s, z;), under the re-
strictions on f.3

2.1 Validation

As an example of a model decomposed into a
stream, we revist the task of gender classifica-
tion based on speech transcripts, as explored by
Boulis and Ostendorf (2005) and later Garera and
Yarowsky (2009). In the original problem definition,
one would collect all transcribed utterances from a
given speaker in a corpus such as Fisher (Cieri et
al., 2004) or Switchboard (Godfrey et al., 1992),
known as a side of the conversation. Then by col-
lapsing these utterances into a single document, one
could classify it as to whether it was generated by a
male or female. Here we define the task as: starting
from scratch, report the classifier probability of the
speaker being male, as each utterance is presented.
Intuitively we would expect that as more utter-
ances are observed, the better our classification ac-
curacy. Researchers such as Burger et al. (2011)
have considered this point, but by comparing the
classification accuracy based on the volume of batch
data available per author (in that case, tweets): the
more prolific the author had been, the better able
they were to correctly classify their gender. We con-
firm here this can be reframed: as a speaker (author)
continues to emit a stream of communication, a dy-
namic model tends to improve its online prediction.
Our collection based on Switchboard consisted
of 520 unique speakers (240 female, 280 male),
with a total of roughly 400k utterances. Simi-
lar to Boulis and Ostendorf, we extracted unigram
and bigram counts as features, but without further

3Note that some non-linear kernels can be maintained online
in a similar fashion. For instance, a polynomial kernel of degree
p decomposes as: (f(Cr) - w)P = (2=)P.
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Figure 2: Accuracy on Switchboard gender classifica-
tion, reported at every fifth utterance, using a dynamic
log-linear model with 10-fold cross validation.

TFIDF reweighting. Ngrams were required to oc-
cur at least 10 times in the training set, recom-
puted for each split of 10-fold cross validation.
Weights were computed under a log-linear model
using LibLinear (Fan et al., 2008), with 5% of
training held out for tuning an L2 regularizing term.
Feature extraction and dynamic aspects were han-
dled through additions to the Jerboa package (Van
Durme, 2012). Similar to previous work, we found
intuitive features such as my husband to be weighted
heavily (see Table 1), along with certain non-lexical
vocalizations such as transcribed laughter.

Table 1: Top ten features by gender.

Male a, wife, is, my wife, right, of, the, uh, ac-
tually, [vocalized-noise]
Female have, and, [laughter], my husband, really,

husband, children, are, would
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Figure 3: Streaming analysis of eight randomly sam-
pled speakers, four per gender (red-solid: female, blue-
dashed: male). Being a log-linear model, the decision
boundary is marked at y = 0.5.

As seen in Figure 2, accuracy indeed improves
as more content is emitted. Figure 3 highlights the
streaming perspective: individual speakers can be
viewed as distinct trajectories through [0, 1], based
on features of their utterances.

3 Randomized Model

Now situated within a streaming context we exact
space savings through approximation, extending the
approach of Van Durme and Lall (2011), there con-
cerned with online Locality Sensitive Hashing, here
initially concerned with taking averages.

When calculating the average over a sequence of
values, X,, = (x1,...,x,), we divide the sum of
the sequence, sum(X,,) = Y I, z;, by its length,
length(X,,) = | X,|:

avg(X,) = %

Our goal in this section is to maintain a space ef-
ficient approximation of avg(X}), as ¢ increases, by
using a bit-saving approximation of both the sum,
and the length of the sequence.

We begin by reviewing the method of Reservoir
Counting, then extend it to a new notion we refer to
as Reservoir Averaging. This will allow in the sub-
sequent section to map our analytic model to a form

Figure 4: Social media platforms such as Facebook or
Twitter deal with a very large number of individuals, each
with a variety of implicit attributes (such as gender). This
motivates a desire for online space efficiency.

explicitly amenable to keeping an online average.

3.1 Reservoir Counting

Reservoir Counting plays on the folklore algorithm
of reservoir sampling, first described in the literature
by Vitter (1985). As applied to a stream of arbitrary
elements, reservoir sampling maintains a list (reser-
voir) of length k, where the contents of the reser-
voir represents a uniform random sample over all el-
ements 1...t observed thus far in the stream.

When the stream is a sequence of positive
and negative integers, reservoir counting implicitly
views each value as being unrolled into a sequence
made up of either 1 or -1. For instance, the sequence:
(3, -2, 1) would be viewed as:

(1,1, 1,-1,-1, 1)

Since there are only two distinct values in this
stream, the contents of the reservoir can be char-
acterized by knowing the fixed value k, and then
s: how many elements in the reservoir are 1.*
This led to Van Durme and Lall defining a method,
ReservoirUpdate, here abbreviated to ResUp,
that allows for maintaining an approximate sum, de-
fined as t(% — 1), through updating these two pa-
rameters ¢ and s with each newly observed element.
Expected accuracy of the approximation varies with
the size of the sample, k. Reservoir Counting ex-
ploits the fact that the reservoir need only be con-
sidered implicitly, where s represented as a b-bit un-
signed integer can be used to characterize a reser-
voir of size k = 2° — 1. This allowed those authors
to show a 50% space reduction in the task of online

4 As the number of -1 values is simply: k — s.



Locality Sensitive Hashing, at similar levels of accu-
racy, by replacing explicit 32-bit counting variables
with approximate counters of smaller size. See (Van
Durme and Lall, 2011) for further details.

3.2 Reservoir Averaging

For a given integer x, let m = |z| be the magnitude
of z, and o = sign(x). For a given sequence, let m*
be the largest such value of m.

Modifying the earlier implicit construction, con-
sider the sequence (3, -2, 1), with m* = 3, mapped
to the sequence:

(13 19 13 19 13 17 -13 '17 '1, '17 '17 1’ 19 17 la 19 _1’ _1)

where each value x is replaced with m* + m ele-
ments of o, and m* —m elements of —c. This views
x as a sequence of length 2m*, made up of 1s and
-1s, where each z in the discrete range [—m*, m*|
has a unique number of 1s.

Now recognize that the average over the original

sequence, here % = % is proportional to the
average over the implicit sequence, % =
4 2(L)

18 — 3\m

Generally for a sequence (xl, vy Tp), With m™* as

*+m; m*—m;
S a1 W '
BRI = (X a2 o)
=1 =
_ i1 M0
nm*

where n2m* is the total number of 1s and -1s
observed in the implicit stream, up to and including
the mapping of element z,. If applying Reser-
voir Counting, s would then record the sampled
number of 1s, as per norm, where ¢ maintained as
the implicit stream length can also be viewed as
storing t = n2m*. At any point in the stream, the
average over the original value sequence can then
be approximated as: (1) the approximate sum of the
implicit stream' divided by (2) the implicit stream

<t<% ~Dr(})a(m*)s = <2—,j -’

Granularity As defined this scheme operates on
streams of integers. We extend the definition to work

with a stream of fixed precision floating point vari-
ables. Let g be a positive integer that we refer to
as the granularity. Modify the mapping of value x
from a sequence of length 2m*, to a sequence of
length g, comprised of +m g instances of o, and
( "‘2 —") g instances of -0. As seen in line 4 of Al-
gorithm 1, a random coin flip determines placement
of the remainder.

For example, the value 1.3, with m* = 3, and
g = 10, would now be represented as a sequence
of #g = 7.16 € (7,8) instances of 1, followed
by however many instances of -1 that lead to a
sequence of length g, after probabilistic rounding.
The possible sequences are thus:

1,1,1,1,1,1,-1,-1, -1)
(l’ 1’ 13 19 13 19 17 19 _la _1)
with the former more likely.
At this point we have described the framework

captured by Algorithm 1, where Van Durme and Lall
(2011) defined Re sUp.

[} bl B

Algorithm 1 UPDATEAVERAGE(n, k, m, m*, 0, g, s)
Parameters:

n : size of stream

k : size of reservoir, also maximum value of s

m : magnitude of update

m”* : maximum magnitude of all updates

o : sign of update

g : granularity

s : current value of reservoir

1: if m = 0 or 0 = O then
Return without doing anything

. ._ m+m*
Dvi= g

2
3
4: v := [v] with probability v — |v], |v] otherwise
5
6
7

: s/ :=ResUp(ng, k,v,0,s)
. ¢ :=ResUp((ng +v),k,g —
: Return s’

v,—0,s)

Log-scale Counting For additional space savings
we might approximate the length parameter ¢ with
a small bit representation, using the approximate
counting scheme of Morris (1978). The method en-
ables counting in log-scale by probabilistically in-
crementing a counter, where it becomes less and
less likely to update the counter after each incre-
ment. This scheme is popularly known and used
in a variety of contexts, recently in the community
by Talbot (2009) and Van Durme and Lall (2009)
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Figure 5: Results on averaging randomly generated se-
quences, with m* = 100,g = 100, and using an 8 bit
Morris-style counter of base 2. Larger reservoir sizes lead
to better approximation, at higher cost in bits.

to provide a streaming extension to the Bloom-filter
based count-storage mechanism of Talbot and Os-
borne (2007a) and Talbot and Osborne (2007b). See
(Flajolet, 1985) for a detailed analysis of Morris-
style counting.

3.3 Experiment

We show through experimentation on synthetic data
that this approach gives reasonable levels of accu-
racy at space efficient sizes of the length and sum
parameter. Random sequences of 1,000 values were
generated by: (1) fix a value for m*; (2) draw a po-
larity bias term p uniformly from the range [0,1];
then (3) for each value, z: (a) o was positive with
probability y; (b) m was drawn from [0, m™*]. Fig-
ure 5 shows results for varying reservoir sizes (us-
ing 4, 8 or 12 bits) when g = 100, m* = 100, and
the length parameter was represented with an 8 bit
Morris-style counter of base 2.

3.4 Justification

Before we close this section, one might ask why this
extension is needed in the first place. As Reservoir
Counting already allows for keeping an online sum,
and pairs it with a length parameter, then this would
presumably be what is needed to get the average we

are focussed on. Unfortunately that is not the case:
the parameter recording the current stream length,
here called ¢, tracks the length of the implicit stream
of 1s and -1s, it does not track the length of the origi-
nal stream of values that gave rise to the mapped ver-
sion. As an example, consider again the sequence:
(3, -2, 1), as compared to: (2,1,-1,-1,1). Both have
the same sum, and would therefore be viewed the
same under the pre-existing Reservoir Counting al-
gorithm, giving rise to implicit streams of the same
length. But critically the sequences have different
averages: % #* %, which we cannot detect based on
the original counting algorithm.

Finally, we restate the constraint: for the sequence
to averaged, one must know m* ahead of time.

4 Application to Classification

Going back to our streaming analysis model, we
have a situation that can be viewed as a sequence
of values, such that we do know m™*. First reinter-
pret the fraction j—i equivalently as the normalized
sum of a stream of elements sampled from w:

j(ci)
St

1
Zt_;t.z. Zw]

i=1 j=1 [=1

The value m* is then: m* = max; |w;|, over a
sequence of length z;. Rather than updating s; and
z¢ through basic addition, we can now use a smaller
bit-wise representation for each variable, and update
via Reservoir Averaging.

4.1 Problems in Practice

Reconsidering the earlier classification experiment,
we found this approximation method led to terri-
ble results: while our experiments on synthetic data
worked well, those sequences were sampled some-
what uniformly over the range of possible values. As
seen in Figure 6, sequences arising from observed
feature weights in a practical setting may not be so
broadly distributed. In brief: the more the maxi-
mum possible update, m*, can be viewed as an out-
lier, then the more the resulting implicit encoding
of g elements per observed weight becomes domi-
nated by “filler”. As few observed elements will in
that case require the provided range, then the im-
plicit representation will be a mostly balanced set of
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Figure 6: Frequency of individual feature weights ob-
served over a full set of communications by a single ex-
ample speaker. Most observed features have relatively
small magnitude weight. The mean value is 1.3, with
7e=rs = 0.79 > 0.5, which properly classifies the
speaker as MALE.

1 and -1 values. These mostly balanced encodings
make it difficult to maintain an adequate approxima-
tion of the true average, when reliant on a small, im-
plicit uniform sample. Here we leave further analy-
sis aside, focusing instead on a modified solution for
the classification model under consideration.

4.2 Rewriting History

Practically we would like to restrict our range to the
dense region of weight updates, while at the same
time not throwing away or truncating larger weights
that appear outside a reduced window. We do this
by fitting a replacement to m*: m’ < m*, based on
the classifier’s training data, such that too-large ele-
ments will be accommodated into the stream by im-
plicitly assuming that the portion of a value that falls
outside the restricted window is “spread out” over
the previously observed values. That is, we mod-
ify the contents of the implicit reservoir by rewriting
history: pretending that earlier elements were larger
than they were, but still within the reduced window.
As long as we don’t see too many values that are
overly large, then there will be room to accommo-
date the overflow without any theoretical damage to
the implicit stream: all count mass may still be ac-

counted for. If a moderately high number of overly
large elements are observed, then we expect in prac-
tice for this to have a negligible impact on down-
stream performance. If an exceptional number of
elements are overly large, then the training data was
not representative of the test set.

The newly introduced parameter m’ is used in
MODIFIEDUPDATEAVERAGE (MUA), which relies
on REWRITEHISTORY. Note that MUA uses the
same value of n when calling REWRITEHISTORY
as it does in the subsequent line calling UPDATEAV-
ERAGE: we modify the state of the reservoir without
incrementing the stream length, taking the current
overflow and pretending we saw it earlier, spread
out across previous elements. This happens by first
estimating the number of 1 values seen thus far in
the stream: #n, then adding in twice the overflow
value, which represents removing o instances of —o
from the stream, and then adding o instances of o.
We probabilistically round the resultant fraction to
achieve a modified version of s, which is returned.

Algorithm 2 MUA (n, k,m,m/, o, g, s)

1: if m < m’ then

2:  Return UPDATEAVERAGE(n, k,m,m’, o, g, s)
3: s’ := REWRITEHISTORY(n, k,m,m’, o, g, s)

4: Return UPDATEAVERAGE(n, k,m’,m’, 0, g, s")

Algorithm 3 REWRITEHISTORY (n, k, m, m/, 0, g, 5)
Parameters:
o : overflow to be accommodated

m— TYI,I

0=

1: S

2: if 0 > 0 then

3:  if s =k then

4: Return s

5. p:=min(L.0, 2 + 22)

6: else

7. if s = 0 then

8: Return s

9:  p:=max(0.0, 3 — %)
10: Return [pk] with prob. pk — |pk], |pk| otherwise

4.3 Experiment

Figure 7 compares the results seen in Figure 2 to
a version of the experiment when using approxima-
tion. Parameters were: g = 100; k = 255; and a
Morris-style counter for stream length using 8 bits
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Figure 7: Comparison between using explicit count-
ing and approximation on the Switchboard dataset, with
bands reflecting 95% confidence.

and a base of 1.3. The value m’ was fit indepen-
dently for each split of 10-fold cross validation, by
finding through simple line search that which mini-
mized the number of prediction errors on the origi-
nal training data (see Figure 8). This result shows
our ability to replace 2 variables of 32 bits (sum
and length) with 2 approximation variables of 8 bits
(reservoir status s, and stream length n), leading to
a 75% reduction in the cost of maintaining online
classifier state, with no significant cost in accuracy.

5 Real World Stream: Twitter

5.1 Setup

Based on the tweet IDs from the data used by
Burger et al. (2011), we recovered 2,958,107 of their
roughly 4 million original tweets.> These tweets
were then matched against the gender labels estab-
lished in that prior work. As reported by Burger
et al., the dominant language in the collection is
English (66.7% reported), followed by Portuguese
(14.4%) then Spanish (6.0%), with a large variety of
other languages with small numbers of examples.

SStandard practice in Twitter data exchanges is to share only
the unique tweet identifications and then requery the content
from Twitter, thus allowing, e.g., the individual authors the abil-
ity to delete previous posts and have that reflected in future data
collects. While respectful of author privacy, it does pose a chal-
lenge for scientific reproducibility.

45000+

400004
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35000

300004

25000+

9 1011 12 13 14 15
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Figure 8: Summed 0/1 loss over all utterances by each
speaker in the Switchboard training set, across 10 splits.
A value of m’ = 5 was on average that which minimized
the number of mistakes made.

Content was lowercased, then processed by regu-
lar expression to collapse the following into respec-
tive single symbols: emoticons; URLs; usernames
(@mentions); and hashtags. Any content deemed
to be a retweet (following the characters RT) was
removed. Text was then tokenized according to a
modified version of the Penn TreeBank tokenization
standard® that was less English-centric.

5.2 Experiment

A log-linear classifier was built using all those au-
thors in the training set’ with at least 10 tweets.
Similar to the previous experiment, unigrams and
bigrams features were used exclusively, with the pa-
rameter m/ fit on the training data.

As seen in Figure 9, results were as in Switch-
board: accuracy improves as more data streams in
per author, and our approximate model sacrifices
perhaps a point of accuracy in return for a 75% re-
duction in memory requirements per author.

Table 2 gives the top features per gender. We
see similarities to Switchboard in terms such as my

SSuch as codified in http://www.cis.upenn.edu/
~treebank/tokenizer.sed

"The same training, development and test set partitions were
used as by Burger et al. (2011), minus those tweets we were
unable to retrieve (as previously discussed).
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Figure 9: Comparison between using explicit counting
and approximation, on the Twitter dataset, with bands re-
flecting 95% confidence.

wife, along with terms suggesting a more youthful
population. Foreign terms are recognized by their
parenthetical translation and 1st- or 2nd-person +
Male/Female gender marking. For example, the Por-
tuguese obrigado can be taken to be literally saying:
I’'m obliged (thank you), and I'm male.

6 Related Work

Streaming algorithms have been developed within
the applied communities of networking, and (very
large) databases, as well as being a popular topic in
the theoretical computer science literature. A sum-

Table 2: Top thirty-five features by gender in Twitter.

Male obrigado (thank you [1M]), wife, my wife,
bro, cansado (tired [1M]), gay, mate, dude,
[@username] why, buddy, windows, album,
dope, beer, [ @username] yo, sir, ps3, comics,
galera (folks/people), amigo (friend [2M]),

man !, fuckin, omg omg, cheers, ai n’t

Female obrigada (thank you [1F]), hubby, husband,
cute, my husband, ?, cansada (tired [1F]),
hair, dress, soooo, lovely, etsy, boyfriend,
jonas, loved, book, sooo, girl, sé (I),
lindo (cute), shopping, amiga (friend [2F]),
yummy, ppl, cupcakes

mary of the streaming algorithms community is be-
yond the scope of this work: interested readers are
directed to Muthukrishnan (2005) as a starting point.

Within computational linguistics interest in
streaming approaches is a more recent development;
we provide here examples of representative work,
beyond those described in previous sections. Leven-
berg and Osborne (2009) gave a streaming variant of
the earlier perfect hashing language model of Talbot
and Brants (2008), which operated in batch-mode.
Using a similar decomposition to that here, Van
Durme and Lall (2010) showed that Locality Sen-
sitive Hash (LSH) signatures (Indyk and Motwani,
1998; Charikar, 2002) built using count-based fea-
ture vectors can be maintained online, as compared
to their earlier uses in the community (Ravichandran
et al., 2005; Bhagat and Ravichandran, 2008). Fi-
nally, Goyal et al. (2009) applied the frequent items®
algorithm of Manku and Motwani (2002) to lan-
guage modeling.

For further background in predicting author at-
tributes such as gender, see (Garera and Yarowsky,
2009) for an overview of previous work and (non-
streaming) methodology.

7 Conclusions and Future Work

We have taken the predominately batch-oriented
process of analyzing communication data and shown
it to be fertile territory for research in large-scale
streaming algorithms. Using the example task of au-
tomatic gender detection, on both spoken transcripts
and microblogs, we showed that classification can
be thought of as a continuously running process, be-
coming more robust as further communications be-
come available. Once positioned within a stream-
ing framework, we presented a novel approximation
technique for compressing the streaming memory
requirements of the classifier (per author) by 75%.
There are a number of avenues to explore based
on this framework. For instance, while here we as-
sumed a static, pre-built classifier which was then
applied to streaming data, future work may consider
the interplay with online learning, based on meth-
ods such as by Crammer et al. (2006). In the appli-

8See the survey by Cormode and Hadjieleftheriou (2009) for
approaches to the frequent items problem, otherwise known as
finding heavy hitters.



cations arena, one might take the savings provided
here to run multiple models in parallel, either for
more robust predictions (perhaps “triangulating” on
language ID and/or domain over the stream), or pre-
dicting additional properties, such as age, national-
ity, political orientation, and so forth. Finally, we
assumed here strictly count-based features; stream-
ing log-counting methods, tailored Bloom-filters for
binary feature storage, and other related topics are
assuredly applicable, and should give rise to many
interesting new results.
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