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Abstract

Accurate prediction of demographic attributes from
social media and other informal online content is
valuable for marketing, personalization, and legal in-
vestigation. This paper describes the construction of
a large, multilingual dataset labeled with gender, and
investigates statistical models for determining the
gender of uncharacterized Twitter users. We explore
several different classifier types on this dataset. We
show the degree to which classifier accuracy varies
based on tweet volumes as well as when various
kinds of profile metadata are included in the models.
We also perform a large-scale human assessment us-
ing Amazon Mechanical Turk. Our methods signifi-
cantly out-perform both baseline models and almost
all humans on the same task.

1 Introduction

The rapid growth of social media in recent years, exem-
plified by Facebook and Twitter, has led to a massive
volume of user-generated informal text. This in turn has
sparked a great deal of research interest in aspects of so-
cial media, including automatically identifying latent de-
mographic features of online users. Many latent features
have been explored, but gender and age have generated
great interest (Schler et al., 2006; Burger and Henderson,
2006; Argamon et al., 2007; Mukherjee and Liu, 2010;
Rao et al., 2010). Accurate prediction of these features
would be useful for marketing and personalization con-
cerns, as well as for legal investigation.

In this work, we investigate the development of high-
performance classifiers for identifying the gender of
Twitter users. We cast gender identification as the ob-
vious binary classification problem, and explore the use
of a number of text-based features. In Section 2, we de-
scribe our Twitter corpus, and our methods for labeling
a large subset of this data for gender. In Section 3 we
discuss the features that are used in our classifiers. We
describe our Experiments in Section 4, including our ex-
ploration of several different classifier types. In Section 5

we present and analyze performance results, and discuss
some directions for acquiring additional data by simple
self-training techniques. Finally in Section 6 we summa-
rize our findings, and describe extensions to the work that
we are currently exploring.

2 Data

Twitter is a social networking and micro-blogging plat-
form whose users publish short messages or tweets. In
late 2010, it was estimated that Twitter had 175 million
registered users worldwide, producing 65 million tweets
per day (Miller, 2010). Twitter is an attractive venue
for research into social media because of its large vol-
ume, diverse and multilingual population, and the gener-
ous nature of its Terms of Service. This has led many re-
searchers to build corpora of Twitter data (Petrovic et al.,
2010; Eisenstein et al., 2010). In April 2009, we began
sampling data from Twitter using their API at a rate of
approximately 400,000 tweets per day. This represented
approximately 2% of Twitter’s daily volume at the time,
but this fraction has steadily decreased to less than 1% by
2011. This decrease is because we sample roughly the
same number of tweets every day while Twitter’s overall
volume has increased markedly. Our corpus thus far con-
tains approximately 213 million tweets from 18.5 million
users, in many different languages.

In addition to the tweets that they produce, each Twitter
user has a profile with the following free-text fields:

e Screen name (e.g., jsmith92, kingofpittsburgh)

Full name (e.g., John Smith, King of Pittsburgh)

Location (e.g., Earth, Paris)

URL (e.g., the user’s web site, Facebook page, etc.)

Description (e.g., Retired accountant and grandfa-
ther)

All of these except screen name are completely op-
tional, and all may be changed at any time. Note that none



Users Tweets
Training | 146,925 | 3,280,532
Development 18,380 403,830
Test 18,424 418,072

Figure 1: Dataset Sizes

of the demographic attributes we might be interested in
are present, such as gender or age. Thus, the existing
profile elements are not directly useful when we wish to
apply supervised learning approaches to classify tweets
for these target attributes. Other researchers have solved
this problem by using labor-intensive methods. For ex-
ample, Rao et al. (2010) use a focused search methodol-
ogy followed by manual annotation to produce a dataset
of 500 English users labeled with gender. It is infeasible
to build a large multilingual dataset in this way, however.

Previous research into gender variation in online dis-
course (Herring et al., 2004; Huffaker, 2004) has found
it convenient to examine blogs, in part because blog sites
often have rich profile pages, with explicit entries for gen-
der and other attributes of interest. Many Twitter users
use the URL field in their profile to link to another facet
of their online presence. A significant number of users
link to blogging websites, and many of these have well-
structured profile pages indicating our target attributes. In
many cases, these are not free text fields. Users on these
sites must select gender and other attributes from drop-
down menus in order to populate their profile informa-
tion. Accordingly, we automatically followed the Twitter
URL links to several of the most represented blog sites
in our dataset, and sampled the corresponding profiles.
By attributing this blogger profile information to the as-
sociated Twitter account, we created a corpus of approx-
imately 184,000 Twitter users labeled with gender.

We partitioned our dataset by user into three distinct
subsets, training, development, and test, with sizes as in-
dicated in Figure 1. That is, all the tweets from each user
are in a single one of the three subsets. This is the corpus
we use in the remainder of this paper.

This method of gleaning supervised labels for our
Twitter data is only useful if the blog profiles are in turn
accurate. We conducted a small-scale quality assurance
study of these labels. We randomly selected 1000 Twitter
users from our training set and manually examined the
description field for obvious indicators of gender, e.g.,
mother to 3 boys or just a dude. Only 150 descriptions
(15% of the sample) had such an explicit gender cue. 136
of these also had a blog profile with the gender selected,
and in all of these the gender cue from the user’s Twit-
ter description agreed with the corresponding blog pro-
file. This may only indicate that people who misrepresent
their gender are simply consistent across different aspects
of their online presence. However, the effort involved in

maintaining this deception in two different places sug-
gests that the blog labels on the Twitter data are largely
reliable.

Initial analysis using the blog-derived labels showed
that our corpus is composed of 55% females and 45%
males. This is consistent with the results of an earlier
study which used name/gender correlations to estimate
that Twitter is 55% female (Heil and Piskorski, 2009).
Figure 2 shows several statistics broken down by gender,
including the Twitter users who did not indicate their gen-
der on their blog profile. In our dataset females tweet at a
higher rate than males and in general users who provide
their gender on their blog profile produce more tweets
than users who do not. Additionally, of the 150 users
who provided a gender cue in their Twitter user descrip-
tion, 105 were female (70%). Thus, females appear more
likely to provide explicit indicators about their gender in
our corpus.

The average number of tweets per user is 21 and is con-
sistent across our subsets. There is wide variance, how-
ever, with some users represented by only a single tweet,
while the most prolific user in our sample has nearly 4000
tweets.

It is worth noting that many Twitter users do not tweet
in English. Table 3 presents an estimated breakdown of
language use in our dataset. We ran automatic language
ID on the concatenated tweet texts of each user in the
training set. The strong preponderance of English in our
dataset departs somewhat from recent studies of Twitter
language use (Wauters, 2010). This is likely due in part to
sampling methodology differences between the two stud-
ies. The subset of Twitter users who also use a blog site
may be different from the Twitter population as a whole,
and may also be different from the users tweeting during
the three days of Wauters’s study. There are also possible
longitudinal differences: English was the dominant lan-
guage on Twitter when the online service began in 2006,
and this was still the case when we began sampling tweets
in 2009, but the proportion of English tweets had steadily
dropped to about 50% in late 2010. Note that we do not
use any explicit encoding of language information in any
of the experiments described below.

Our Twitter-blog dataset may not be entirely represen-
tative of the Twitter population at general, but this has
at least one advantage. As with any part of the Inter-
net, spam is endemic to Twitter. However by sampling
only Twitter users with blogs we have largely filtered out
spammers from our dataset. Informal inspection of a few
thousand tweets revealed a negligible number of commer-
cial tweets.

3 Features

Tweets are tagged with many sources of potentially dis-
criminative metadata, including timestamps, user color



Users Tweets Mean tweets
Count  Percentage Count Percentage per user

Female 100,654 42.3% 2,429,621 47.7% 24.1

Male 83,075 35.0 1,672,813 32.8 20.1

Not provided 53,817 22.7 993,671 19.5 18.5

Figure 2: Gender distribution in our blog-Twitter dataset

Language Users  Percentage Feature extraction
English 98,004 66.7% Char  Word Distinct
Portuguese | 21,103 14.4 ngrams  ngrams features
Spanish 8,784 6.0 Screen name 1-5 none 432,606
Indonesian 6,490 4.4 Full name 1-5 1 432,820
Malay 1,401 1.0 Description 1-5 1-2 1,299,556
German 1,220 0.8 Tweets 1-5 1-2 13,407,571
Chinese 985 0.7 Total 15,572,522
Japanese 962 0.7 i
French 878 0.6 Figure 4: Feature types and counts
Dutch 761 0.5
Swedish 686 0.5 that separates words at transitions between alphanumeric
Filipino 643 0.4 characters and non-alphanumeric.! We make no attempt
Italian 631 0.4 to tokenize unsegmented languages such as Chinese, nor
Other 4,377 3.0 do we perform morphological analysis on language such

Figure 3: Language ID statistics from training set

preferences, icons, and images. We have restricted our
experiments to a subset of the textual sources of features
as listed in Figure 4.

We use the content of the tweet text as well as three
fields from the Twitter user profile described in Section 2:
full name, screen name, and description. For each user in
our dataset, a field is in general a set of text strings. This
is obviously true for tweet texts but is also the case for
the profile-based fields since a Twitter user may change
any part of their profile at any time. Because our sam-
ple spans points in time where users have changed their
screen name, full name or description, we include all of
the different values for those fields as a set. In addition,
a user may leave their description and full name blank,
which corresponds to the empty set.

In general, our features are quite simple. Both word-
and character-level ngrams from each of the four fields
are included, with and without case-folding. Our fea-
ture functions do not count multiple occurrences of the
same ngram. Initial experiments with count-valued fea-
ture functions showed no appreciable difference in per-
formance. Each feature is a simple Boolean indicator
representing presence or absence of the word or character
ngram in the set of text strings associated with the partic-
ular field. The extracted set of such features represents
the item to the classifier.

For word ngrams, we perform a simple tokenization

as Korean; we do no language-specific processing at all.
We expect the character-level ngrams to extract useful in-
formation in the case of such languages.

Figure 4 indicates the details and feature counts for the
fields from our training data. We ignore all features ex-
hibited by fewer than three users.

4 Experiments

We formulate gender labeling as the obvious binary clas-
sification problem. The sheer volume of data presents
a challenge for many of the available machine learning
toolkits, e.g. WEKA (Hall et al., 2009) or MALLET (Mc-
Callum, 2002). Our 4.1 million tweet training corpus
contains 15.6 million distinct features, with feature vec-
tors for some experiments requiring over 20 gigabytes
of storage. To speed experimentation and reduce the
memory footprint, we perform a one-time feature genera-
tion preprocessing step in which we convert each feature
pattern (such as “caseful screen name character trigram:
Joh”) to an integer codeword. The learning algorithms
do not access the codebook at any time and instead deal
solely with vectors of integers. We compress the data fur-
ther by concatenating all of a user’s features into a single
vector that represents the union of every tweet produced
by that user. This condenses the training data to 190,000
vectors occupying 11 gigabytes of storage.

We performed initial feasibility experiments using a
wide variety of different classifier types, including Sup-
port Vector Machines, Naive Bayes, and Balanced Win-

'We use the standard regular expression pattern \b.



now?2 (Littlestone, 1988). These initial experiments were
based only on caseful word unigram features from tweet
texts, which represent less than 3% of the total feature
space but still include large numbers of irrelevant fea-
tures. Performance as measured on the development set
ranged from Naive Bayes at 67.0% accuracy to Balanced
Winnow?2 at 74.0% accuracy. A LIBSVM (Chang and
Lin, 2001) implementation of SVM with a linear ker-
nel achieved 71.8% accuracy, but required over fifteen
hours of training time while Winnow needed less than
seven minutes. No classifier that we evaluated was able
to match Winnow’s combination of accuracy, speed, and
robustness to increasing amounts of irrelevant features.

We built our own implementation of the Balanced Win-
now2 algorithm which allowed us to iterate repeatedly
over the training data on disk rather than caching the en-
tire dataset in memory. This reduced our memory re-
quirements to the point that we were able to train on the
entire dataset using a single machine with 8 gigabytes of
RAM.

We performed a grid search to select learning parame-
ters by measuring their affect on Winnow’s performance
on the development set. We found that two sets of pa-
rameters were required: a low learning rate (0.03) was
effective when using only one type of input feature (such
as only screen name features, or only tweet text features),
and a higher learning rate (0.20) was required when mix-
ing multiple types of features in one classifier. In both
cases we used a relatively large margin (35%) and cooled
the learning rate by 50% after each iteration.

These learning parameters were used during all of the
experiments that follow. All gender prediction models
were trained using data from the training set and evalu-
ated on data from the development set. The test set was
held out entirely until we finalized our best performing
models.

4.1 Field combinations

We performed a number of experiments with the Winnow
algorithm described above. We trained it on the train-
ing set and evaluated on the development set for each of
the four user fields in isolation, as well as various com-
binations, in order to simulate different use cases for sys-
tems that perform gender prediction from social media
sources. In some cases we may have all of the metadata
fields available above, while in other cases we may only
have a sample of a user’s tweet content or perhaps just
one tweet. We simulated the latter condition by randomly
selecting a single tweet for each user; this tweet was used
for all evaluations of that user under the single-tweet con-
dition. For training the single tweet classifier, however,
we paired each user in the training set with each of their
tweets in turn, in order to take advantage of all the train-
ing data. This amounted to over 4 million training in-

stances for the single tweet condition.

We paid special attention to three conditions: single
tweet, all fields, and all tweets. For these conditions, we
evaluated the learned models on the training data, the de-
velopment set, and the test set, to study over-training and
generalization. Note that for all experiments, the evalua-
tion includes some users who have left their full name or
description fields blank in their profile.

In all cases, we compare results to a maximum likeli-
hood baseline that simply labels all users female.

4.2 Human performance

We wished to compare our classifier’s efficacy to human
performance on the same task. A number of researchers
have recently experimented with the use of Amazon Me-
chanical Turk (AMT) to create and evaluate human lan-
guage data (Callison-Burch and Dredze, 2010). AMT
and other crowd-sourcing platforms allow simple tasks to
be posted online for large numbers of anonymous work-
ers to complete.

We used AMT to measure human performance on gen-
der determination for the all tweets condition. Each AMT
worker was presented with all of the tweet texts from
a single Twitter user in our development set and asked
whether the author was male or female. We redundantly
assigned five workers to each Twitter user, for a total of
91,900 responses from 794 different workers. We experi-
mented with a number of ways to combine the five human
labels for each item, including a simple majority vote and
a more sophisticated scheme using an expectation maxi-
mization algorithm.

4.3 Self-training

Our final experiments were focused on exploring the use
of unlabeled data, of which we have a great deal. We
performed some initial experiments on a self-training ap-
proach to labeling more data. We trained the all-fields
classifier on half of our training data, and applied it to the
other half. We trained a new classifier on this full train-
ing set, which now included label errors introduced by the
limitations of the first classifier. This provided a simula-
tion of a self-training setup using half the training data.
Any robust gains due to self-training should be revealed
by this setup.

5 Results

5.1 Field combinations

Figure 5 shows development set performance on various
combinations of the user fields, all of which outperform
the maximum likelihood baseline that classifies all users
as female. The single most informative field with respect
to gender is the user’s full name, which provides an accu-
racy of 89.1%. Screen name is often a derivative of full



Baseline (F) 54.9%
One tweet text 67.8
Description 71.2
All tweet texts 75.5
Screen name (e.g. jsmith92) 77.1
Full name (e.g. John Smith) 89.1
Tweet texts + screen name 81.4
Tweet texts + screen name + description | 84.3
All four fields 92.0

Figure 5: Development set accuracy using various fields

Condition Train Dev  Test
Baseline (F) 54.8% | 54.9 | 54.3
One tweet text | 77.8 67.8 | 66.5
Tweet texts 77.9 75.5 | 74.5
All fields 98.6 92.0 | 91.8

Figure 6: Accuracy on the training, development and test sets

name, and it too is informative (77.1%), as is the user’s
self-assigned description (71.2).

Using only tweet texts performs better than using only
the user description (75.5% vs. 71.2). Tweet texts are
sufficient to decrease the error by nearly half over the
all-female prior. It appears that the tweet texts con-
vey more about a Twitter user’s gender than their own
self-descriptions. Even a single (randomly selected)
tweet text contains some gender-indicative information
(67.2%). These results are similar to previous work. Rao
et al. (2010) report results of 68.7% accuracy on gender
from tweet texts alone using an ngram-only model, ris-
ing to 72.3 with hand-crafted “sociolinguistic-based” fea-
tures. Test set differences aside, this is comparable with
the “All tweet texts” line in Figure 5, where we achieve
an accuracy of 75.5%.

Performance of models built from various aggregates
of the four basic fields are shown in Figure 5 as well. The
combination of tweet texts and a screen name represents
a use case common to many different social media sites,
such as chat rooms and news article comment streams.
The performance of this combination (81.4%) is signif-
icantly higher than either of the individual components.
As we have observed, full name is the single most infor-
mative field. It out-performs the combination of the other
three fields, which perform at 84.3%. Finally, the classi-
fier that has access to features from all four fields is able
to achieve an accuracy of 92.0%.

The final test set accuracy is shown in Figure 6. This
test set was held out entirely during development and has
been evaluated only with the four final models reported
in this figure. The difference between the scores on the
train and development sets show how well the model can

Rank MI Feature f | P(Female|f)
1] 0.0170 ! 0.601

2| 0.0164 _t 0.656

3 1 0.0163 _lov 0.687

41 0.0162 love 0.680

5] 0.0161 lov 0.676

6 | 0.0160 _love 0.689

7 | 0.0160 [ 0.618

8 | 0.0149 :) 0.697

9 | 0.0148 y! 0.687
10 | 0.0145 my 0.637
11 | 0.0143 love._ 0.691
12 | 0.0143 haha 0.705
13 | 0.0141 my - 0.634
14 | 0.0140 my 0.637
15 | 0.0140 _) 0.697
16 | 0.0139 my 0.634
17 | 0.0138 i 0.711
18 | 0.0138 hah 0.698
19 | 0.0137 _hah 0.714
20 | 0.0135 _so 0.661
21 | 0.0134 _haha 0.714
22 | 0.0132 so 0.661
23 | 0.0128 i 0.618
24 | 0.0127 000 0.708
25 | 0.0126 [ 0.743
26 | 0.0123 ilov 0.728
27 | 0.0120 ove._ 0.671
28 | 0.0117 ay! 0.718
29 | 0.0116 aha 0.678
30 | 0.0116 <3 0.856
31 | 0.0115 _cute 0.826
32 | 0.0114 ilo 0.704
33 | 0.0114 1) S 0.701
34 | 0.0110 2 ( 0.731
35 | 0.0109 _0)$ 0.701
36 | 0.0109 's 0.614
37 | 0.0107 ahah 0.716
38 | 0.0106 <3 0.857
39 | 0.0106 i lo 0.722
40 | 0.0105 vyl 0.709
464 | 0.0051 _ht d 0.506
465 | 0.0051 hank 0.641
466 | 0.0051 too- 0.659
467 | 0.0051 _yay! 0.818
468 | 0.0051 _http d 0.506
469 | 0.0051 _htt g 0.506
624 | 0.0047 Googl o 0.317
625 | 0.0047 ing!_ 0.718
626 | 0.0047 hair_ 0.749
627 | 0.0047 D 0.573
628 | 0.0047 y-t 0.725
629 | 0.0046 Goog o 0.318

Figure 7: A selection of tweet text features, ranked by mutual
information. Character ngrams in Courier, words in bold.
Underscores are spaces, $ matches the end of the tweet text.
O marks “male” features.



fit the data. There are features in the user name and user
screen name fields that make the data trivially separable.
The tweet texts, however, present more ambiguity for the
learners. The difference between the development and
test set scores suggest that only minimal hill-climbing oc-
curred during our development.

We have performed experiments to better understand
how performance scales with training data size. Figure 8
shows how performance increases for both the all-fields
and tweet-texts-only classifiers as we train on more users,
with little indication of leveling off.

As discussed in Section 2, there is wide variance in
the number of tweets available from different users. In
Figure 9 we show how the tweet text classifier’s accu-
racy increases as the number of tweets from the user in-
creases. Each point is the average classifier accuracy for
the user cohort with exactly that many tweets in our dev
set. Performance increases given more tweets, although
the averages get noisy for the larger tweet sets, due to
successively smaller cohort sizes.

Some of the most informative features from tweet texts
are shown in Figure 7, ordered by mutual information
with gender. There are far more of these strong features
for the female category than the male: only five of the top
1000 features are associated more strongly with males,
i.e. they have lower P(F'emale| feature) than the prior,
P(Female) = 0.55.

Some of these features are content-based (hair, and
several fragments of love), while others are stylistic (ooo,
several emoticons). The presence of http as a strong
male feature might be taken to indicate that men include
links in their tweet texts far more often than women,
but a cursory examination seems to show instead that
women are simply more likely to include “bare” links,
e.g.,emnlp.orgvs. http://emnlp.org.

5.2 Human performance

Figure 10 shows the results of the human performance
benchmarks using Amazon Mechanical Turk. The raw
per-response performance is 60.4%, only moderately bet-
ter than the all-female baseline. When averaged across
workers, however, this improves substantially, to 68.7.
This would seem to indicate that there were a few poor
workers who did many annotations, and in fact when we
limit the performance average to those workers who pro-
duced 100 or more responses, we do see a degradation to
62.2.

The problem of poor quality workers is endemic to
anonymous crowd sourcing platforms like Mechanical
Turk. A common way to combat this is to use redun-
dancy, with a simple majority vote to choose among mul-
tiple responses for each item. This allows us to treat the
five workers who responded to each item as an ensem-
ble. As Figure 10 indicates, this provides some improve-

Baseline | 54.9 |

Average response 60.4
Average worker 68.7
Average worker (100 or more responses) | 62.2
Worker ensemble, majority vote 65.7
Worker ensemble, EM-adjusted vote 67.3
Winnow all-tweet-texts classifier | 75.5 |

Figure 10: Comparing with humans on the all tweet texts task

ment over the raw result (65.7% vs. 60.4). A different
approach, first proposed by Dawid and Skene (), is to use
an expectation maximization algorithm to estimate the
quality of each source of labels, as well as estimate the
posterior for each item. In this case, the first is an AMT
worker’s capability and the second is the distribution of
gender labels for each Twitter user.

The Dawid and Skene approach has previously been
applied to Mechanical Turk responses (Ipeirotis et al.,
2010). We used their implementation on our AMT re-
sults but with only moderate improvement over the sim-
ple majority ensemble (67.3% vs. 65.7). All of the aggre-
gate human results are substantially below the all-tweet-
texts classifier score, suggesting that this is a difficult
task for people to perform. As Figure 11 indicates, most
workers perform below 80% accuracy, and less than 5%
of the prolific workers out-perform the automatic classi-
fier. These high-scoring workers may indeed be good at
the task, or they may have simply been assigned a less-
difficult subset of the data. Figure 12 illustrates this by
showing aligned worker performance and classifier per-
formance on the precise set of items that each worker
performed on. Here we see that, with few exceptions,
the automatic classifier performs as well or better than
the AMT workers on their subset.

5.3 Self-training

Finally, as described in Section 4.3, we performed some
initial experiments on a self-training approach to label-
ing more data. As described above the all-fields classi-
fier achieves an accuracy of 92% on the development set
when trained on the full training set. Training on half of
the training data results in a drop to 91.1%. The sec-
ond classifier trained on the full training set, but with
some label errors introduced by the first, had further de-
graded performance of 90.9%. Apparently the errorful la-
bels introduced by the simplistic self-training procedure
overwhelmed any new information that might have been
gained from the additional data. We are continuing to ex-
plore ways to use the large amounts of unsupervised data
in our corpus.
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6 Conclusion

In this paper, we have presented several configurations of
a language-independent classifier for predicting the gen-
der of Twitter users. The large dataset used for construc-
tion and evaluation of these classifiers was drawn from
Twitter users who also completed blog profile pages.

These classifiers were tested on the largest set of
gender-tagged tweets to date that we are aware of. The
best classifier performed at 92% accuracy, and the clas-
sifier relying only on tweet texts performed at 76% ac-
curacy. Human performance was assessed on this latter
condition, and only 5% of 130 humans performed 100 or
more classifications with higher accuracy than this ma-
chine.

In future work, we will explore how well such models
carry over to gender identification in other informal on-
line genres such as chat and forum comments. Further-
more, we have been able to assign demographic features
beside gender, including age and location, to our Twit-
ter dataset. We have begun to build classifiers for these
features as well.
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