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Abstract

We present an accurate word alignment algo-
rithm that heavily exploits source and target-
language syntax. Using a discriminative frame-
work and an efficient bottom-up search algo-
rithm, we train a model of hundreds of thou-
sands of syntactic features. Our new model
(1) helps us to very accurately model syntac-
tic transformations between languages; (2) is
language-independent; and (3) with automatic
feature extraction, assists system developers
in obtaining good word-alignment performance
off-the-shelf when tackling new language pairs.
We analyze the impact of our features, describe
inference under the model, and demonstrate
significant alignment and translation quality
improvements over already-powerful baselines
trained on very large corpora. We observe
translation quality improvements correspond-
ing to 1.0 and 1.3 BLEU for Arabic-English and
Chinese-English, respectively.

1 Introduction

In recent years, several state-of-the-art statistical ma-
chine translation (MT) systems have incorporated
both source and target syntax into the grammars that
they generate and use to translate. While some tree-
to-tree systems parse source and target sentences
separately (Galley et al., 2006; Zollman and Venu-
gopal, 2006; Huang and Mi, 2010), others project
syntactic parses across word alignments (Li et al.,
2009). In both approaches, as in largely all statistical
MT, the quality of the alignments used to generate
the rules of the grammar are critical to the success
of the system. However, to date, most word align-
ment systems have not considered the same degree
of syntactic information that MT systems have.
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Extending unsupervised models, like the IBM
models (Brown et al., 1993), generally requires
changing the entire generative story. The additional
complexity would likely make training such mod-
els quite expensive. Already, with ubiquitous tools
like GIZA++ (Och and Ney, 2003), training accurate
models on large corpora takes upwards of 5 days.

Recent work in discriminative alignment has fo-
cused on incorporating features that are unavailable
or difficult to incorporate within other models, e.g.
(Moore, 2005; Ittycheriah and Roukos, 2005; Liu
et al., 2005; Taskar et al., 2005b; Blunsom and
Cohn, 2006; Lacoste-Julien et al., 2006; Moore et al.,
2006). Even more recently, motivated by the rise of
syntax-based translation models, others have sought
to inform alignment decisions with syntactic infor-
mation (Fraser and Marcu, 2007; DeNero and Klein,
2007; May and Knight, 2007; Fossum et al., 2008;
Haghighi et al., 2009; Burkett et al., 2010; Pauls and
Klein, 2010; Riesa and Marcu, 2010).

Motivated by the wide modeling gap that still re-
mains between syntax-based translation and word-
alignment models, in this paper we expand on pre-
vious work in discriminative alignment, and move
forward in three key areas:

1. We heavily exploit both source and target syntax
in ways that most models can not. In addition,
during training we extract and learn hundreds
of thousands of features automatically, learning
both the structure and parameters for the model
at the same time.

2. Our model and inference support arbitrary fea-
tures, and easily scale to millions of features.

3. Having strengthened the synchronicity between



alignment and syntax-based translation mod-
els, we advance state-of-the-art performance in
terms of both alignment and translation quality
over already-powerful baselines on very large
corpora.

2 A Feature-Rich Syntax-Aware
Alignment Model

We follow Riesa and Marcu (2010) for efficient in-
ference with arbitrary features, but do not rely upon
hand-crafted syntactic patterns; rather, we extract
syntactic features automatically from training data.
We also introduce, in Section 5, an iterative approx-
imate Viterbi inference procedure to deal with the
asymmetry of the model. We show that this boosts
both alignment and downstream translation quality
even further.

The model itself is a linear combination of fea-
tures, whose parameters are learned online via a
structured perceptron (Collins, 2002). However, as
we describe in Section 3, the features of the model
are not known a priori. In what follows, we describe
the search algorithm so that the reader has an under-
standing of the domain of locality before we begin
to describe features and how they are learned.

2.1 Search Overview

We formulate the search for the best alignment as
bottom-up parsing. Given a syntactic parse tree on
one side of a parallel sentence, we use the structure
of the tree to guide the search process. The key idea
is that complex interactions between alignments are
less likely to cross constituents, so we search recur-
sively on the tree.

As an illustrative example, we point to the struc-
ture of the hypergraph search depicted in Figure 1.
Here we are aligning the sentence pair:

a flag hung from the stage
a b # &F HE

tdi shang gua zhe gudqi

The figure shows the search process for a small ex-
ample with beam size k. Each black square repre-
sents a partial alignment. Each partial alignment at
each node is ranked according to its model score. In
this figure, the 1-best hypothesis at the leftmost NP
node is constructed by composing the best hypothe-
sis at its child DT and the 2nd-best hypothesis at its
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Figure 1: Approximate search through a hypergraph
with beam size k = 5. Each black square repre-
sents a partial alignment; larger grey-shaded boxes
are links in an alignment. Each partial alignment
at each node is ranked according to its model score.
The root node, S, contains a k-best list of full align-
ments.

child NN. At the root node, we have a k-best list of
full alignments.

We continue with a procedural description of the
algorithm.

2.1.1 Initialization

We begin by visiting each preterminal node in se-
quence. We enumerate and score all one-to-one links
as well as the unaligned link (aligned to null). Next,
for a given preterminal node, we use cube pruning
(Chiang, 2007) to find the top k one-to-two align-
ments, given the scores of the one-to-one links. We
perform additional iterations of cube pruning to find
top k sets of one-to-m links. In theory, we could in-
crease m to the length of the foreign sentence and
enumerate top k lists for each English word aligned
to between 0 and all foreign words. However, in
practice we set m to limit time spent here, while
maintaining acceptable recall. In our experiments
we set m = 2 for both English-Arabic and English-
Chinese.



2.1.2 Combination

We continue traversing the tree bottom-up. At
each nonterminal node, a k-best list of partial align-
ments from each of its child nodes are combined
into a larger span. We use cube pruning to do this
efficiently.! Nodes in different subtrees are pro-
cessed independently of one another; i.e., for any
node, alignment information at that node’s sister is
unavailable. For example, in Figure 1, alignment
information at the leftmost NP is unavailable to us
while we are constructing partial alignments at the
PP. Search continues recursively up the tree, until
we have reached the root node. The root node again
computes the top k alignments from its children, and
these comprise our final k-best list of full alignments.

In our experiments we only make use of the 1-
best alignment for evaluation and translation. Previ-
ous work has shown that only shallow k-best lists of
alignments may be beneficial, and that very deep k-
best lists are not especially useful in improving final
downstream translation grammar extraction due to
rapid degradation in quality (Venugopal et al., 2008;
Liu et al., 2009b); though they may have other uses.

3 Automatically Exploiting Syntactic
Features for Alignment

Up to now, previous work in syntax-based alignment
has largely modeled alignments based on features
encoding target-side English syntactic and lexical in-
formation, but only lexical information on the source
side.

However, there is much more data waiting to be
exploited, and the flexible model and efficient and
modular learning framework of hierarchical discrim-
inative alignment afford us this possibility. Here,
we discuss our target-side features, source-side fea-
tures, and features that jointly take into account both
source- and target-side information.

3.1 Target Syntax Features

Most alignment systems currently function without
explicit regard to the downstream translation model.
Some notable exceptions are May and Knight (2007)
who generate syntactic alignments by re-aligning
word-to-word alignments with a syntactic model;

!Cube pruning is approximate when we have nonlocal com-
bination features, and most of our features are of this type.

and Pauls and Klein (2010) who generate syntactic
alignments with a synchronous ITG (Wu, 1997) ap-
proach. We depart from ITG-based models (Cherry
and Lin, 2006; Haghighi et al., 2009) because of their
complexity (O(n®) in the synchronous case), requir-
ing heavy pruning or the computation of outside cost
estimates (DeNero and Klein, 2010). Instead, we
use linguistically motivated target-side parse trees to
constrain search, as described above. These trees are
output from the Berkeley parser (Petrov and Klein,
2007) and fixed at alignment time. We use these trees
not only as a vehicle for search, but also for features.

A significant motivation for this work is the desire
to make the connection, at alignment time, between
translation rules used in decoding and the alignments
that yield such translation rules. To do this, we fold
the rule extraction process into the alignment search.
At each step in the search process, we can extract
translation rules from a given partial alignment and
encode them as binary features.

Importantly, the rule extraction process itself is not
directly tied to the alignment system, but rather to
the downstream translation model. We can drop in
any type of rule extraction we like into the alignment
system, though some may generalize better than oth-
ers to new data in a large corpus — important for
supervised training conditions with relatively small
amounts of annotated data.’> In this work we focus
on string-to-tree translation and the translation rule
space described in (Galley et al., 2004; Galley et al.,
20006).

During training and inference, we are constantly
scoring partial alignments. Every time we have a
partial alignment to score, we can extract all poten-
tial translation rules implied by that alignment, and
encode those rules as features. In this case, we are
doing two important things:

1. informing the alignment search with the rules of
the translation model, and

2. modeling actual translation rules — the model
parameters give us a way to quantify the rela-
tive importance of each rule.

For example, we learn that:

2For example, fully lexicalized phrase-based rules are less
useful here than gapped phrases or hierarchical rules.



(I) Chinese VP and NP tend to be reordered around the
i particle when translating to English.

feature
NP(NPq VPz) « 2 @

weight
1.01304

(2) When translating an Arabic NP as part of a VP, we
often insert “is”.
feature
VP((VBZ is) NP[) <

weight
0.67252

From this process we extract and learn 326,239
lexicalized and non-lexicalized translation rule fea-
tures in our Arabic-English model; 234,972 in our
Chinese-English model. Those features for which
a positive weight is learned tend to generalize well
over the training data; negatively weighted features
do not, and are generally learned from alignments
with mistakes during search. See Figure 2 for addi-
tional examples of rule features learned for Arabic-
English alignment.

Negative evidence Nearly 67% of the rule fea-
tures we learn for Chinese-English, and 55% of the
rule features we learn for Arabic-English are neg-
atively weighted. Early experiments involved only
firing indicator rule features when an extracted rule
at alignment-time matched in a set of rules extracted
offline from our hand-aligned data. However, cover-
age from such rules will always be limited; firing ev-
ery rule as a feature as it is encountered during search
gives us many more darts to throw. Using only rule
features extracted from gold data lowers F-measure
by close to 5 points.

3.2 Source Syntax Features and Joint Features

Source syntactic trees have recently been shown to
be helpful in machine translation decoding (Zhang
et al., 2008; Liu et al., 2009a; Chiang, 2010), but
to our knowledge have not been used in alignment
models other than that of Burkett et al. (2010). We
parse the source side of our data using the Berkeley
parser (Petrov and Klein, 2007), and encode infor-
mation provided by the source syntax as features in
the model in two ways: (1) as tree-distance features?,
and (2) as joint source-target syntax features.

3These features parameterize the intuition that if two source
words align to a single target word, we prefer them to be mem-
bers of the same constituent, or having a short path through the

tree from one word to the other, e.g. (in, #£...4"), or the first and
last Chinese words in the examples in Figure 3.

Extracted Rule Feature Weight
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Figure 2: Translation rules as features extracted dur-
ing Arabic-English alignment. These rules show that
we learn to reorder adjectives and nouns inside noun
phrases, and that prepositions before sister NPs pre-
fer to be translated monotonically. For Chinese-
English, we learn the opposite.

3.2.1 Source-Target Coordination Features

Drawing on work by Chiang (2010) in stochas-
tically rewriting syntactic constituents across lan-
guages in a translation model, we adapt the general
idea to alignment modeling. Chiang calls these fea-
tures fuzzy syntax features; here, we simply call them
coordination features in our adaptation for align-
ment, so as to avoid the implication that we are
rewriting.

This feature family is a set of binary features
that may fire at any nonterminal node in the tree
during bottom-up search. A feature fires for each
combination of two nonterminal source and target
nodes s and #, respectively, that match the following
conditions:

1. tis the label of the current target tree node in the
bottom-up search.

2. sis the label of the source tree node of maximal
depth (i.e. closest to leaf nodes) that spans all
links also spanned by .

Figure 3 shows three examples of this joint fea-
ture over source and target trees. In Figure 3a,
the maximal-depth source tree node that spans ev-
ery link also spanned by the shaded target tree NP
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(a) Source/target tree feature firing at
node NP, with value ( NP ; NP ). The
maximal-depth source tree node that
spans every link also spanned by the
shaded target tree NP is also labeled
NP.
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node IN, returning value ( IN ; PP ).
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(c) In this figure, depicting an incor-
rect alignment, the same feature value
is fired as for the correct alignment in
3b: ( IN ; PP ). We need more con-
textual annotation to create more dis-
criminative power.

Figure 3: Two examples of joint features over monolingual parse trees. The value of the feature depends on

the shaded areas.

is also labeled NP. So, the feature returns a value
of (NP; NP). In Figure 3b, PP is the label of the
maximal-depth source tree node that spans every link
also spanned by the shaded target tree IN node; the
feature fires a value (IN ; PP). We might expect this
pairing of IN with PP, or of IN with P, but we would
expect to learn a penalizing parameter weight for the
pairing of, say, IN with NP.

Adding more context Powerful as this feature is,
it is not quite discriminating enough; it may return
the same feature value for both a correct and incor-
rect alignment, as shown in Figure 3c. To over-
come this, we introduce additional features anno-
tated with the left-most and right-most tags in the
current span. For example, in this figure, we also
fire ( IN ; PP(P,NP) ), and learn a negative weight
of —0.638 denoting a poor choice of alignment. We
also find it helpful to keep the original unannotated
feature as a poor-man’s backoff.

Some examples Table 1 shows some of the
maxmially and minimally-weighted features
learned. As the more highly weighted features
show, both models learn to prefer alignments that
result in the coordination of similar constituent
labels. For example, the Chinese model learns a
very high weight for aligning sets of English words
that form prepositional phrases to sets of Chinese

Ara-Eng Model Chi-Eng Model

eng ara w eng chi w
[1] SBAR SBAR 640 PP PP 103
[21 S S(CCPU) 491 NP NP 9.38
[3] PP PP 420 SBAR VP(VV,PU) 6.97
[4] VP VP 390 NP NP(DT,NN) 6.67
[S] SBAR PP 258 PP PP(PLC) 638
[6] NP S -280 NP PP -6.82
[71 NP VP 301 S IP(PU.PU) -7.44
[8] NP NP(NN,IN) -452 PP P -7.33
[9] PP VP -5.13 SBAR VP -71.72
[10] PP S -737 NP IP -7.83

Table 1: This table shows a sampling of the highest
and lowest-weighted coordination features applied
when scoring partial alignments at nodes in the tree.
Preterminal tags inside parentheses indicate the POS
tags on the left and right edge of a given constituent.

words that also form prepositional phrases®.

Inversely, we learn high negative weights for
model features that fire for alignments that oblige
the firing of features of very dissimilar nonterminal
labels, and that often yield asynchronous bracket-
ing. For example, the Arabic model learns that En-
glish words that form prepositional phrases should

“In Table 1, Chinese feature [1].



not align to sets of Arabic words that form entire sen-
tences or verb phrases’.

In total, we learn 127,932 syntactic coordination
features in our Arabic-English model; 59,239 for

Chinese-English.

4 Learning

We learn feature weights using a parallelized imple-
mentation of online averaged perceptron (Collins,
2002). We distribute training examples to CPUs in a
cluster and essentially run several perceptron learn-
ers in parallel. We communicate and average the
weight vectors of each learner according to the It-
erative Parameter Mixing strategy described by Mc-
Donald et al. (2010).

At each iteration, our perceptron update is:
w — w+h(y;) - h(®) 3)
And we define:

y =arg max £(y;,y) + w - h(y) “4)

yecand(x)

(yi,y)=1-F1(yi,y) )

with w our weight vector, h(y) our sparse vector
of feature values, and F(y;, y) balanced F-measure.
The loss, €(y;, ¥), is a measure of how bad it would
be to guess ¥ instead of y.

In selecting y, we draw upon the loss-augmented
inference literature (Tsochantaridis et al., 2004;
Taskar et al., 2005a). Alignment y is the output
candidate maximizing the sum of both the loss and
model score. This guess appears attractive to the
model, yet has low F-measure, and so is exactly the
sort of output we would like to update away from.

During training, we learn both the parameters and
model structure. Figure 4b shows how the size of
the model grows over time. As described in Sec-
tions 2 and 3, we automatically extract and fire fea-
tures given an alignment configuration and our cur-
rent position in the tree. We see a steep initial growth
in model size, and then begin to trail off as the num-
ber of new unique rules and negative evidence we
encounter diminishes.

3In Table 1, Arabic features [6] and [7].

Model Selection Among models from the first it-
eration up to convergence, we choose the model pa-
rameters from the best performing model as mea-
sured by F-measure on a held-out development set
of alignments.

5 [Iterative Approximate Viterbi Inference

Though up to now we have described features that
fire during bottom-up search on the target-language
tree, we can also search bottom-up on the source-
language tree. The syntactic features we have de-
scribed are generic enough that they will still be ex-
tractable and applicable. Because our model and in-
ference procedure are asymmetric, a search on the
source-language tree will generate alignments from
a different space, and can provide a unique signal we
would not otherwise have. We can use the Viterbi
alignments from each model to inform the other. In
the following we describe a method for simultane-
ously training both target-tree and source-tree mod-
els but with features to enforce agreement, somewhat
similar to (Nivre and McDonald, 2008) in integrat-
ing two dependency parsing models.

We begin by training two models, one that oper-
ates on the target tree, and one that operates on the
source tree. Call the parameters learned from these
models w| and w{, respectively. Then, performing
inference under these models yields alignments a/
and aj.

In the next iteration we learn parameters w5 and
w;, and introduce agreement features. In this step,
during training to find w’z, the target-tree model uses
aj to fire indicator features. These fire for any align-
ment link that was also present in the previous itera-
tion’s source-tree alignment, aj. Analogously, when
searching for the best wj, we use a] to fire indicator
features that fire for any alignment link also present
in the previous iteration’s target-tree alignment, .

This process of using the alignment from the pre-
vious iteration’s opposing tree continues until con-
vergence, i.e. until we no longer see improve-
ment in our 1-best source-tree and target-tree align-
ments. When we use these alignments for down-
stream translation, we symmetrize with the grow-
diag-final heuristic, which continues to work re-
markably well in practice. We also experiment with
the intersection of both final alignments.
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(a) Learning curves (Arabic-English): F-measure accu-
racy on heldout development data over time for five dif-
ferent beam settings, k=2, k=4, k=16, k=64 and k=128.
For Arabic-English, improvements are minimal with
beams larger than k=128; and for Chinese-English, with
beams larger than k=256.
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(b) Model size as a function of time for five different
beam settings (Arabic-English): We see a steep initial
growth, and then begin to trail off as the number of new
unique extractable features and negative evidence we en-
counter diminishes. Growth rate is higher for models
with narrower beams that make more mistakes.

Figure 4: Learning feature-rich alignment models. Figure 4a shows learning curves on heldout data for five
different beam sizes. Figure 4b shows how the models dynamically grow over time. In Figure 4b we notice
that less accurate models with narrower beams need to add more complexity in an attempt to make up for

their many more mistakes.

6 Evaluation

6.1 Alignment Quality

From LDC2006E86 and LDC2006E83, we use as
training data 2,280 hand-aligned sentence pairs of
Arabic-English and 1,102 for Chinese-English. We
measure training convergence using a held-out de-
velopment set of 100 sentence pairs for each lan-
guage pair, and evaluate with F-measure on a held-
out test set of 184 sentences pairs for Chinese-
English and 364 sentence pairs for Arabic-English.
We use instances of the Berkeley parser (Petrov and
Klein, 2007) trained on the English Penn Treebank,
Chinese Treebank 6, and the Arabic Treebank parts
1-3; for each language, trees are fixed at alignment
time using the 1-best output from each parser.

We use Model-4 symmetrized with the grow-diag-
final heuristic, trained with GIZA++ as a baseline
alignment model. We train two GIZA++ models on
our largest available Chinese-English and Arabic-
English parallel corpora. These consist of 261M
and 223M English words® respectively. The size
of these corpora make for quite a powerful unsuper-

These counts correspond to 240M words of Chinese and
194M words of Arabic.

vised baseline.

In training our alignment model, we use the syn-
tactic features discussed in Section 3, plus word-
based lexical features t(e | f) and #(f | ¢) used dur-
ing initialization, extracted offline directly from the
translation-table of GIZA++. Using these features
alone results in an F-measure of 59.1 for Arabic-
English, and 55.6 for Chinese-English. Our auto-
matically extracted syntactic features and iterative
inference algorithm get us the rest of the way, bring-
ing performance up to 87.6 and 87.0, respectively.

Table 2 shows the results on our held-out 100-
sentence test set. In an intrinsic evaluation on an
alignment task, our F-measure scores are more than
15 points higher than the baseline for both language
pairs.

6.2 Translation Quality

In evaluating downstream translation quality, we
build three translation systems each for Arabic-
English and Chinese-English: one with align-
ments from GIZA++, one with alignments from our
syntactically-informed discriminative model, and
one with alignments from our model with iterative
inference (Section 5). For each of these systems we



Arabic-English Chinese-English
F P R F P R

GIZA++ M4 grow-diag-final

Target-tree alignments only

with Iterative Inference (grow-diag-final)
with Iterative Inference (intersection)

725 745 705 717 714 720
86.8 89.1 846 844 894 800
876 89.7 856 870 900 84.1
834 931 756 831 954 736

Table 2: F-measure, Precision, Recall for GIZA++ Model-4, and for alignments from this work. GIZA++
was trained on 223M words for Arabic-English, and 261M words for Chinese-English. We observe very
large gains in accuracy of 15 points for both language pairs. Iterative inference with source and target-tree
alignments yields a large effect on Chinese-English recall, and a modest improvement in Arabic-English.

align our parallel training corpora described in Sec-
tion 6.1, and compute word-based lexical weighting
features (Koehn et al., 2003) based on these align-
ments.

Because of the number of experiments involved
in this research, we needed to accelerate our down-
stream experimental pipeline. While we align our
full training corpus, we extract translation rules from
a subset of our alignment training data; the quality of
the translation rules extracted is still a function of the
original alignment model.

We train a syntax-based string-to-tree translation
model (Galley et al., 2004; Galley et al., 20006)
and extract translation rules.’” using alignments pro-
duced by each system from 4.25+5.43M words for
Arabic-English and 31.8+37.7M words for Chinese-
English. For Arabic-English, we tune our MT sys-
tem on a held-out development corpus of 1,172 par-
allel sentences, and test on a heldout set of 746 paral-
lel sentences with four references each. For Chinese-
English we tune our MT system on a held-out de-
velopment corpus of 4,089 parallel sentences, and
test on a set of 4,060 sentences with four references
each. We tune the translation models for these sys-
tems with MIRA (Watanabe et al., 2007; Chiang et
al., 2008). Our tuning and test corpora are drawn
from the NIST 2004 and 2006 evaluation data, dis-
joint from our rule-extraction data. All systems used
two language models; one trained on the combined
English sides of our Arabic-English and Chinese-
English data (480M words), and one trained on 4 bil-
lion words of English data.

MT results are shown in Table 3. We show a gain

7We use the so-called composed rules of (Galley et al.,2006).

ara-eng chi-eng
Alignment model BLEU BLEU
GIZA++ Model-4 47.6 26.2
Target-tree alignments only 48.3" 26.4*
+Iterative Inference (gdf) 48 .4 27.0*
+Iterative Inference (intersection) 48.6" 27.5*

Table 3: IBM BLEU scores using a syntax-based
MT system. We show statistically significant gains
in both language pairs over unsupervized GIZA++
Model 4 trained on very large corpora. An asterisk
(*) denotes a statistically significant improvement
with p < 0.01 over the number immediately above;
a (+) denotes p < 0.05.

of 1.0 and 1.3 BLEU points over GIZA++ Model-4.
Each is statistically significant over the baseline.

In the case of Chinese-English, we seea 1.1 BLEU
gain when using iterative inference over the standard
model which provides only target-tree alignments.
As measured by a bootstrap resampler, this improve-
ment is statistically significant, with p < 0.01.

For Arabic-English, we see a BLEU gain of 0.7
with target-tree alignments alone, and a total 1.0
BLEU gain over the baseline with iterative inference
and our joint-agreement features.

We expect the limited improvement of iterative in-
ference for Arabic-English is due to at least two fac-
tors:

1. the relative weakness of our Arabic parser, and

2. as shown in Table 2, our Arabic target-tree
alignments are already quite accurate.



7 Discussion

We achieve our best downstream BLEU results when
using iterative inference with source-tree and target-
tree alignments, keeping the intersection.’ These
alignments have been shown to have recall in a sim-
ilar neighborhood as our unsupervised baseline, but
extremely high precision.

As DeNero and Klein (2010) and others have
observed, the relationship between word alignment
evaluation metrics and BLEU score remains tenu-
ous at best. While we are able to induce some of
the most accurate alignments we have seen to date,
it remains unclear, given our gold hand-aligned data,
whether we are optimizing for the right function ulti-
mately for the translation task. Related metrics, like
Rule F-measure (Fossum et al., 2008) and Transla-
tion Unit Error Rate (Sggaard and Kuhn, 2009), are
still functions of a given gold alignment. If the gold
alignment is not ideally annotated for the translation
task, it matters little what our alignment evaluation
metric is.

Why do grow-diag-final alignments (for our sys-
tem) not perform as well? We believe the answer lies
in the fact that these alignments foo closely resemble
the gold alignments with word-alignment annotation
standards® that do not handle function words ideally
for the translation task. Indeed, Hermjakob (2009)
reports improved BLEU with a hand-modified gold
standard.

Interestingly, the places in which our source-tree
and target-tree alignments most often disagree is in
the alignment of function words with no clear trans-
lation in the opposite language. For example, En-
glish the has no translation in Chinese. Our inter-
section alignments generally leave the unaligned to
Chinese words, whereas in our gold alignments the
is generally aligned to the same word as the head of
the NP in which it appears.'”

We see our best translation performance with our

8Intersection symmetrization does not help GIZA++ because
the resulting recall is so low as to severely limit the usefulness
of direct translation rule extraction with such alignments (49.7
Recall for Chi-Eng; 47.2 Recall for Ara-Eng).

We refer to those used for data used in this work,
LDC2006E86 and LDC2006E93, as well as the standards for
later hand-aligned data developed for the GALE program.

UE.g., ((the country , [E%)); but not, {(the, 0); (coun-
try, E%%))

intersection alignments because we believe it largely
leaves untranslated words and words without clear
translations in the opposite language unaligned; we
believe this may be the right thing to do.!" Con-
tinuing with the the example, our translation model
learns to insert words like the where appropriate,
and such insertion rules are validated by the lan-
guage model. We learn with good coverage accurate
high-precision translation rules for content words,
and general insertion rules for words like the, instead
of learning two unique lexicalized rules for a given
content word, one with and one without the. In this
way, we are learning a more general grammar that
explains the data.

8 Conclusion

In this work we are closing the gap between trans-
lation and alignment models in terms of syntactic
sophistication. We have (1) shown how to effi-
ciently extract hundreds of thousands of language-
independent syntactic features useful for alignment,
(2) given a detailed analysis of the types of linguistic
phenomena these varied features generalize, and (3)
report significant gains not only on alignment quality
but also on downstream machine translation quality
(1.0+ BLEU) over very strong baselines across di-
verse language pairs.

We have also hinted at roadblocks to improved dis-
criminative alignment modeling for translation. We
expect that an accurate discriminative word align-
ment system, such as the one presented here, in con-
junction with better annotation standards for align-
ment will take us even farther beyond the advance-
ments in translation quality shown here.
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