Exact Decoding of Phrase-Based Translation Models through Lagrangian Relaxation: Supplementary Material

Yin-Wen Chang MIT CSAIL Cambridge, MA 02139, USA yinwen@csail.mit.edu

A An Example Run of the Algorithm in Figure 3

Figure 1 gives an example run of the algorithm. After 31 iterations the algorithm detects that the dual is no longer decreasing rapidly enough, and runs for K = 10 additional iterations, tracking which constraints are violated. Constraints y(6) = 1 and y(10) = 1 are each violated 10 times, while other constraints are not violated. A recursive call to the algorithm is made with $C = \{6, 10\}$, and the algorithm converges in a single iteration, to a solution that is guaranteed to be optimal.

B Speeding up the DP: A* Search

In the algorithm depicted in Figure 3, each time we call $Optimize(\mathcal{C} \cup \mathcal{C}', u)$, we expand the number of states in the dynamic program by adding hard constraints. On the graph level, adding hard constraints can be viewed as expanding an original state in \mathcal{Y}' to $2^{|\mathcal{C}|}$ states in $\mathcal{Y}'_{\mathcal{C}}$, since now we keep a bit-string $b_{\mathcal{C}}$ of length $|\mathcal{C}|$ in the states to record which words in \mathcal{C} have or haven't been translated. We now show how this observation leads to an A* algorithm that can significantly improve efficiency when decoding with $\mathcal{C} \neq \emptyset$.

For any state $s = (w_1, w_2, n, l, m, r, b_C)$ and Lagrange multiplier values $u \in \mathbb{R}^N$, define $\beta_C(s, u)$ to be the maximum score for any path from the state s to the end state, under Lagrange multipliers u, in the graph created using constraint set C. Define $\pi(s) = (w_1, w_2, n, l, m, r)$, that is, the corresponding state in the graph with no constraints ($C = \emptyset$). Then for any values of s and u, we have

$$\beta_{\mathcal{C}}(s, u) \le \beta_{\emptyset}(\pi(s), u)$$

Michael Collins Department of Computer Science, Columbia University, New York, NY 10027, USA mcollins@cs.columbia.edu

That is, the maximum score for any path to the end state in the graph with no constraints, forms an upper bound on the value for $\beta_{\mathcal{C}}(s, u)$.

This observation leads directly to an A* algorithm, which is exact in finding the optimum solution, since we can use $\beta_{\emptyset}(\pi(s), u)$ as the admissible estimates for the score from state *s* to the goal (the end state). The $\beta_{\emptyset}(s', u)$ values for all *s'* can be calculated by running the Viterbi algorithm using a backwards path. With only $1/2^{|\mathcal{C}|}$ states, calculating $\beta_{\emptyset}(s', u)$ is much cheaper than calculating $\beta_{\mathcal{C}}(s, u)$ directly. Guided by $\beta_{\emptyset}(s', u), \beta_{\mathcal{C}}(s, u)$ can be calculated efficiently by using A* search.

Using the A* algorithm leads to significant improvements in efficiency when constraints are added. Section 6 presents comparison of the running time with and without A* algorithm.

Input German: es bleibt jedoch dabei , dass kolumbien ein land ist , das aufmerksam beobachtet werden muss .			
<i>t</i> .	$L(u^{t-1})$	$y^t(i)$	derivation y^t
1	-11.8658	0 0 0 0 1 3 0 3 3 4 1 1 0 0 0 0 1	
2	-5.46647	22402010001011111	$ \begin{vmatrix} 3,3 \\ \text{however} \end{matrix}, \begin{vmatrix} 1,1 \\ \text{it} \end{vmatrix} \begin{vmatrix} 2,3 \\ \text{is} \end{matrix}, \text{however} \begin{vmatrix} 5,5 \\ \text{owever} \end{vmatrix} \begin{vmatrix} 3,3 \\ \text{it} \end{vmatrix} \begin{vmatrix} 1,1 \\ \text{is} \end{matrix}, \text{however} \begin{vmatrix} 5,5 \\ \text{is} \end{matrix}, \text{however} \begin{vmatrix} 7,7 \\ \text{clombia} \end{vmatrix} \begin{vmatrix} 11,11 \\ \text{l} \end{vmatrix} \begin{vmatrix} 16,16 \\ \text{must} \end{vmatrix} \begin{vmatrix} 13,15 \\ \text{be closely monitored} \end{vmatrix} \begin{vmatrix} 17,17 \\ \text{l} \end{vmatrix} \end{vmatrix} $
	:		
32	-17.0203	11111011121111111	$ \begin{vmatrix} 1,5 \\ \text{nonetheless}, \end{vmatrix} \begin{bmatrix} 7,7 \\ \text{colombia} \end{vmatrix} \begin{bmatrix} 10,10 \\ \text{is} \\ \text{s} \end{vmatrix} \begin{bmatrix} 8,8 \\ \text{a} \\ \text{country that} \end{vmatrix} \begin{bmatrix} 16,16 \\ \text{must} \\ \text{must} \end{vmatrix} \begin{bmatrix} 13,15 \\ \text{be closely monitored} \\ \text{closely monitored} \end{vmatrix} \begin{bmatrix} 17,17 \\ \text{closely monitored} \\ \text{closely monitored} \end{bmatrix} = 1 $
33	-17.1727	1 1 1 1 1 2 1 1 1 0 1 1 1 1 1 1 1 1	1, 5 6, 6 8, 9 6, 6 7, 7 11, 12 16, 16 13, 15 17, 17 nonetheless, that a country that colombia , which must be closely monitored 1
34	-17.0203	11111011121111111	$ \begin{vmatrix} 1,5 \\ \text{nonetheless}, \end{vmatrix} \begin{bmatrix} 7,7 \\ \text{colombia} \end{vmatrix} \begin{bmatrix} 10,10 \\ \text{is} \\ \text{a} \end{vmatrix} \begin{bmatrix} 8,8 \\ \text{country that} \\ \text{a} \end{vmatrix} \begin{bmatrix} 16,16 \\ \text{must} \\ \text{be closely monitored} \\ \text{be closely monitored} \\ \end{bmatrix} \begin{bmatrix} 17,17 \\ \text{.} \\ \text{.} \\ \end{bmatrix} $
35	-17.1631	11111011121111111	1, 5 7, 7 10, 10 8, 8 9, 12 16, 16 13, 15 17, 17 nonetheless, colombia is a country that must be closely monitored .
36	-17.0408	111112111011111111	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
37	-17.1727	11111011121111111	1, 5 7, 7 10, 10 8, 8 9, 12 16, 16 13, 15 17, 17 nonetheless, colombia is a country that must be closely monitored .
38	-17.0408	111112111011111111	1,5 6,6 8,9 6,6 7,7 11,12 16,16 13,15 17,17 nonetheless, that a country that colombia , which must be closely monitored .
39	-17.1658	111112111011111111	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
40	-17.056	11111011121111111	1,5 7,7 10,10 8,8 9,12 16,16 13,15 17,17 nonetheless, colombia is a country that must be closely monitored .
41	-17.1732	111112111011111111	$ \begin{vmatrix} 1,5 \\ \text{nonetheless} , \end{vmatrix} \begin{matrix} 6,6 \\ \text{that} \end{vmatrix} \begin{vmatrix} 8,9 \\ \text{that} \end{vmatrix} \begin{matrix} 6,6 \\ \text{tolombia} \end{vmatrix} , \begin{matrix} 7,7 \\ \text{that} \end{vmatrix} \begin{matrix} 11,12 \\ \text{colombia} \end{vmatrix} , \begin{matrix} 16,16 \\ \text{must} \end{matrix} \begin{vmatrix} 13,15 \\ \text{be closely monitored} \end{vmatrix} , \begin{matrix} 17,17 \\ . \end{matrix} \end{vmatrix} $
			count(6) = 10; count(10) = 10; count(i) = 0 for all other i adding constraints: 6 10
42	-17.229	111111111111111111111	$ \begin{vmatrix} 1,5\\ \text{nonetheless} \end{vmatrix}, \begin{vmatrix} 7,7\\ \text{colombia} \end{vmatrix} \begin{vmatrix} 6,6\\ \text{that} \end{vmatrix} = \begin{vmatrix} 8,12\\ \text{nonetheless} \end{vmatrix}, \begin{vmatrix} 16,16\\ \text{that} \end{vmatrix} = \begin{vmatrix} 13,15\\ \text{that} \end{vmatrix} = \begin{vmatrix} 17,17\\ \text{that} \end{vmatrix} = \begin{vmatrix} 17,17\\ \text{that} \end{vmatrix} = \begin{vmatrix} 12,15\\ \text{that} \end{vmatrix} = \begin{vmatrix} 12,15\\ \text{that} \end{vmatrix}$

Figure 1: An example run of the algorithm in Figure 3. At iteration 32, we start the K = 10 iterations to count which constraints are violated most often. After K iterations, the count for 6 and 10 is 10, and all other constraints have not been violated during the K iterations. Thus, hard constraints for word 6 and 10 are added. After adding the constraints, we have $y^t(i) = 1$ for $i = 1 \dots N$, and the translation is returned, with a guarantee that it is optimal.