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Speech and language

Speech is the most natural way for communication

− vocalized-form of communication
− syntactic combination of lexicals
− drawn from very large vocabularies

Language is the ability to acquire and use complex systems of
communication

− natural language is a language used naturally by humans for
communication
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Document representation

Document representation is developed for text
analysis

Topic-based text model

− each document is treated as a bag of words
− each document can exhibit multiple topics

Symbolic model is required because

− each topic is a multinomial variable
− each document is represented by a multinomial

mixture model

Latent Dirichlet allocation (Blei et al., 2003) is
popular to build the topic model
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Machine translation

Machine translation develops the algorithm to translate text or speech
from one language to another

− linguistic rules are helpful
− statistical or corpus-based approach is popular
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Information retrieval

Document retrieval

− ranking problem

Document categorization

− classification problem

Document representation or symbolic learning is a crucial issue
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Document summarization

Automatic summarization involves

− a process of reducing a text document
− a computer program in order to create a summary
− the most important sentences of the original documents

Selection of representative sentences is performed
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Reading comprehension

Reading comprehension is the ability to read text, process it, and
understand its meaning

− understanding of a text message
− language skills: phonology, syntax, semantics, and pragmatics
− affected by prior knowledge, ability to make inference
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Information extraction

Information extraction from news article

(Narasimhan et al., 2016)
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Question answering

QA aims to answer the questions posted by humans in a natural
language

− takes natural language question as an input rather than keywords
− keyword extraction is performed to identify the question type
− “person” or “location” are retrieved from “who” or “where”
− candidate answers are further classified
− compact and meaningful answer is translated by parsing
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Dialogue generation

(Li et al., 2016)
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Dialogue with question clarification

(Li et al., 2016)
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Text understanding and reasoning

Synthetic tasks in bAbI project (Weston et al., 2015) used to evaluate
the learning algorithms for

− text understanding and reasoning
− question answering problem
− categorization of different kinds of questions

20 tasks in bAbI dataset (https://research.fb.com/projects/babi)

− single, two or three supporting facts
− yes/no question
− counting
− lists/sets
− simple negation
− indefinite knowledge

Children’s book test (Hill et al., 2016)

− measure how well a text model can exploit wider linguistic context
− in each question, the first 20 sentences form the context, and a word is

removed from the 21st sentence, which becomes the query
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Probabilistic model

Most likely words from top topics Topic proportions
sequence

region

pcr

identified

fragments

two

genes

three

cdna

analysis

measured

average

range

values

different

size

three

calculated

two

low

residues

binding

domains

helix

cys

regions

structure

terminus

terminal

site

computer

methods

number

two

principle

design

access

processing

advantage

important

0.2

0.1

Abstract with the most likely topic assignments
Statistical approaches help in the determination of significant configurations in protein and 

nucleic acid sequence data. Three recent statistical methods are discussed: (i) score- 

based sequence analysis that provides a means for characterizing anomalies in local 

sequence text and for evaluating sequence comparisons; (ii) quantile distributions of amino 

acid usage that reveal general compositional biases in proteins and evolutionary relations; 

and (iii) r-scan statistics that can be applied to the analysis of spacing of sequence markers. 

p(word) =
∑

topic p(word | topic)p(topic)
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Neural network

Deep structured/hierarchical learning

Multiple layers of nonlinear processing units

High-level abstraction is learned

Run

Jump
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Probabilistic Model + Neural Network
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Modern machine learning

Probabilistic Models Neural Nets

Structure Top-down Bottom-up
Representation Intuitive Distributed
Interpretation Easy Harder

Semi/unsupervised Easier Harder
Incorp. domain knowl. Easy Hard
Incorp. constraint Easy Hard
Incorp. uncertainty Easy Hard

Learning Many algorithms Back-propagation
Inference/decode Harder Easier
Evaluation on int. quantity End performance
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Seq2Seq learning: encoder-decoder network

Traditional DNN was sensibly encoded with vectors with a fixed
dimensionality

Many important problems are best expressed with sequences whose
lengths are unknown a priori

An input sequence “ABC” is encoded and decoded to produce
“WXYZ” as the output sequence (Sutskever et al., 2014)

LSTM architecture is applied to deal with this problem
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Sequence learning

RNN can not deal with sequential learning with input and output
sequences in different lengths

Sequence to sequence learning is performed by

− first, map the input sequence to a fixed-sized vector using on RNN
− second, map the vector to the target sequence using another RNN

LSTM is used to estimate p(y1, . . . , yT ′ |x1, . . . , xT ) where
{x1, . . . , xT } is an input sequence and {y1, . . . , yT ′} is its output
sequence whose length T ′ may differ from T

LSTM language model is calculated by

p(y1, . . . , yT ′ |x1, . . . , xT ) =
T ′∏
t=1

p(yt|v, y1, . . . , yt−1)

LSTM computes this probability by obtaining the fixed dimensional v
of {x1, . . . , xT } given by the last hidden state of LSTM

25 / 95



Learning via LSTM

Each sentence ends with a symbol <EOS>, which enables the model
to define a distribution over sequences of all possible lengths

Two LSTMs are used (Sutskever et al., 2014)

− one for the input sequence and another for the output sequence
− number of parameters is increased
− computational cost is negligible
− natural to train LSTM on multiple language pairs simultaneously

Deep LSTM outperformed shallow LSTM. Four-layer LSTM was
chosen

Reverse the order of the words of an input sentence
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Listen, attend and spell

Traditional acoustic, pronunciation and language models were trained
separately based on different objectives

This disjoint training issue was tackled by designing models that are
trained end-to-end from speech signals directly to word transcripts

− connectionist temporal classification
− sequence to sequence model with attention

Listen, attend and spell are introduced (Chan et al., 2015)

Encoder is a listener while decoder is a speller

Bidirectional LSTM is used in encoder and decoder

Attention model is used to extract the relevant information from a
small number of time steps
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Machine translation

Sequence to sequence translation model (Sutskever et al., 2014)

− compresses all the information into a fixed length vector s0
− degrades as the length of input sentence increases

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM: encoder

Howareyou

s0

Comment allez vous

< start > Comment allez

LSTM

vous

< end >

LSTM: decoder
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Image caption

It is challenging to describe the content of an image which
− captures the objects in an image
− expresses the relations between objects

An end-to-end system (Vinyals et al., 2015) is built with
− CNN encoder
− LSTM decoder

LSTM

h0

LSTM LSTM LSTM LSTM LSTM
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Machine translation with attention

Attention mechanism was
merged in a sequence to
sequence model (Bahdanau
et al., 2015)

− alignment model
− translation model

ci =

Tx∑
j=1

αijhj

Compute attention weights

αij =
exp eij∑Tx

k=1 exp eik

where eij = Score(si−1,hj)
LSTM: encoder

Howareyou

Comment allez vous

< start > Comment allez vous

< end >

LSTM: decoder

®t;1 ®t;2
®t;3

c1 c2 c3 c4

h1 h2 h3

s1 s2 s3 s4
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Image caption with attention

a1
: : :a2 a3 aL

Attention
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Results on MS COCO dataset
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Convolutional neural network

Two-dimensional CNN (Krizhevsky et al., 2012)

Input Output

Convolution Max-pooling

yX Zf1g
Ẑ
f1g

Convolution

Zf2g

U V
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Convolutional LSTM

Spatiotemporal correlation is captured for weather forecasting
(Xingjian et al., 2015)

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Whc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

where ∗ is the convolution operation and ◦ is the Hadamard product
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Character CNN for text classification

Character-based convolutional neural network achieved better text
classification than

− word-based convolutional neural network

− recurrent neural network

(Zhang et al., 2015)
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Convolutional sequence to sequence learning

Advantages of using convolutional neural network for sequence
modeling

− independence on the computations of the previous time step

− computational parallelization

− hierarchical representation over the input sequence

− shorter path to capture long-range dependencies

∗ CNN - O(n
k
) with a kernel of width k

∗ RNN - O(n) for linear time

An entirely convolutional sequence to sequence model (Gehring et al.,
2017) was proposed for machine translation

− GLU (Gated Linear Unit): a simplified gating mechanism that reduces
the gradient vanishing problem

− residual connections

− attention mechanism
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vj

ai ci

zj

CNNa

CNNc
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Convolutional encoder

Encoder consists of two stacked convolutional networks

− CNNa produces the key vector zj

zj = CNNa(ej)

− CNNc produces the value vector vj

vj = CNNc(ej)

Conditional input ci to the decoder is obtained by

ai = Attention(zj , si)

ci =

T∑
j=1

aijvj

40 / 95



Convolutional encoder using gated CNN

Gated linear unit (Dauphin et al., 2017) is calculated via convolution
operation ∗ for hidden layers h0, . . . , hL as

hl(E) = (E ∗W + b)⊗ σ(E ∗V + c)

− LSTM style with no forget and input gates required
− only possess output gate in which information to be propagated
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Dilated convolutional neural network - WaveNet

Dilated CNN (Van Den Oord et al., 2016) was proposed to generate a
raw audio waveform

− probabilistic and autoregressive

− dilated causal convolution

− conditioned on speaker identity to generate different voices

− generic and flexible framework

Waveform x = {x1, · · · , xT } is factorised as a product of conditional
probabilities

p(x) =

T∏
t=1

p(xt|x1, · · · , xt−1)

− stack of convolutional layers

− no pooling layers

− optimize to maximize the log-likelihood
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Causal convolution

− cannot depend on any of the future time steps

− shifting the output of a normal convolution by a few time steps

− CNN is faster than RNN

1-D convolution with kernel size 2
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Dilated convolution

− filter is applied over an area larger than its length by skipping input
values with a certain step

− similar to pooling or strided convolutions, but the output has the same
size as the input

− dilation 1 yields the standard convolution

− receptive field to grow exponentially with depth
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Dilated recurrent neural network

Challenges when learning on long sequences with RNNs

− complex dependencies

− vanishing and exploding gradients

− efficient parallelization

Multi-resolution with dilated recurrent skip connections (Chang et al.,
2017)

− neural connection architecture analogous to the dilated CNN

− single-layer dilated RNN

W

x0 x1 x2 x3 x4 x5 x6 x7
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Dilated recurrent skip connection

Denote h
(l)
t as the cell in layer l and time t. Dilated recurrent skip

connection is represented as

h
(l)
t = f(x

(l)
t , h

(l)

t−d(l))

− d(l) is the skip length or dilation of layer l

− x
(l)
t is the input to layer l at time t

− f(·) denotes any output operation for a RNN cell

Recurrent chains can be
computed in parallel

Degree of parallelization is
increased by d(l)

x1

x2

x0

x3

x5

x6

x4

x7

W
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Multilayer dilated recurrent neural network

Dilated RNN is constructed by stacking dilated recurrent layers

− dilation increases exponentially across layers

− dilated RNN with L = 3 and M = 2

d(l) =M l−1, l = 1, · · · , L
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Neural Turing machine versus memory network

Most machine learning models lack an easy way to

− read and write to part of a long-term memory component

− combine this seamlessly with inference

Neural Turing machine (Graves et al., 2014)

− learns to read from and write to memory cells without explicit
supervision

− allows end-to-end training via content-based soft attention

− emulates algorithmic mechanism in a way that allows gradient-based
optimization

Memory network (Weston et al., 2015)

− includes memory cells that can be accessed via an addressing
mechanism

− combines learning strategies for inference with a memory component
that can be read and written to
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Neural Turing machine (Graves
et al., 2014)

− intelligence requires
knowledge

− acquiring knowledge can be
done via large-scale deep
learning

− neural networks excel at
storing implicit knowledge,
but struggle to memorize
facts

− neural networks lack the
working memory system that
allows human beings to
explicitly hold and
manipulate pieces of
information
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Memory Key: k
Content Addressing Parameter: ¯

Interpolation Parameter: g
Convolutaional Shift Parameter: s
Sharpening Parameter: °
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Reading

1

2

2

3

2

4

1

1

1

3

2

1

0.1 0.4 0.3 0.2 0 0 0

2.2

2.3

1.7

− Mt is the N ×M memory matrix at time t where N is the number of
memory locations, and M is the vector size at each location

− wt = {wt(i)} is a weight vector over N locations emitted by a read
head at time t, and

∑
i wt(i) = 1, 0 ≤ wt(i) ≤ 1

− read vector rt of length M , returned by the head, is defined as a
rt ←

∑
i wt(i)Mt(i)
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Writing step 1 → Erasing M̃t(i)←Mt−1(i)[1− wt(i)et]
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Writing step 2 → Adding Mt(i)← M̃t(i) + wt(i)at
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Addressing mechanism

Content
Addressing

0.1 0.4 0.3 0.2 0 0 0

Head Location: wt¡1

1

2

2

3

2

4

1

1

1

3

2

1

Memory: M

Interpolation

Convolutional
Shift

Sharpening

0 1 0 0 0 0 0

.05 .20 .65 .10 0 0 0

.20 .65 .10 0 0 0 .05

.01 .99 0 0 0 0 0

Head Location: wt

Previous State Controller
Outputs

1

3

2 Memory Key: k

1 0 0

Shift Weighting: s

¯ = 100

g = 0:5

° = 5
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Step 1: content addressing

1

2

2

3

2

4

1

1

1

3

2

1

0

1

1

2

1

0

1

0

0

.25 .21 .19 .06 .10 .15 .03

1

3

2

.14 .14 .14 .14 .14 .14 .140 1 0 0 0 0 0

wct (i)←
exp

(
βtK[kt,Mt(i)]

)
∑

j exp

(
βtK[kt,Mt(j)]

) where K[u,v] =
u · v

||u|| · ||v||
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Step 2: interpolation

.05 .20 .65 .10 0 0 0 0.1 0.4 0.3 0.2 0 0 00 0 1 0 0 0 0

0.1 0.4 0.3 0.2 0 0 0

0 0 1 0 0 0 0

− facilitate both simple iteration across the locations of the memory and
random-access jumps

− prior to rotation, each head emits a scalar interpolation gate gt

wg
t ← gtw

c
t + (1− gt)wt−1
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Step 3: convolutional shift

.05 .20 .65 .10 0 0 0

1 0 0

.20 .65 .10 0 0 0 .05

1 0 0

− each head emits a shift weighting st that defines a normalised
distribution over the allowed integer shifts

− memory locations from 0 to N − 1

− rotation is performed via the circular convolution

w̃t(i)←
∑N−1

j=0 wgt (j)st(i− j)
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Step 4: sharpening

.01 .99 0 0 0 0 0 .14 .14 .14 .14 .14 .14 .140 1 0 0 0 0 0

.20 .65 .10 0 0 0 .05

− rotation will transform a weighting focused at a single point into one
slightly blurred over three points

− each head accordingly emits one further scalar γt to sharpen weight

wt(i)←
w̃t(i)

γt∑
j w̃t(j)

γt
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End-to-end memory network (Sukhbaatar et al., 2015)

− memory network (Weston et al., 2015) was not easy to train via error
backpropagation

− continuous form of memory network

− it can be trained end-to-end from input-output pairs

− supportive attention was introduced (Chien and Lin, 2018)

Q: Where is the apple?

Embedding: B

1 2 3 2 1
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End-to-end memory network (Sukhbaatar et al., 2015)

− memory network (Weston et al., 2015) was not easy to train via error
backpropagation

− continuous form of memory network

− it can be trained end-to-end from input-output pairs

− supportive attention was introduced (Chien and Lin, 2018)

-1 -2 3 4 2

3 1 0 2 1

-2 5 1 2 3

1 3 2 1 1

1 -1 -2 2 1

1 3 1 -1 2

-2 1 -3 2 1

3 1 1 1 1

Embedding: CEmbedding: A

Sam walks into the kitchen.
Sam picks up an apple.

Sam walks into the bedroom.
Sam drops the apple.
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Embedding C

Sam walks into the kitchen.
Sam picks up an apple.

Sam walks into the bedroom.
Sam drops the apple.

Q: Where is the apple?

Embedding B

1 2 3 2 1

Embedding A

-1 -2 3 4 2

3 1 0 2 1

-2 5 1 2 3

1 3 2 1 1

0

.27

0

.73

Softmax 1.5 2.5 1.5 1.3 1

.00 .70 .28 .02 .00

Softmax

1 -1 -2 2 1

1 3 1 -1 2

-2 1 -3 2 1

3 1 1 1 1
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Auto-encoder

:::
:::

:::
:::

:::
:::

xx x̂̂x

zz

Encoder Decoder

ÁÁ μμ
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Variational auto-encoder

:::
:::

:::
:::

:::
:::

Encoder Decoder
:::
:::

qÁ(zjx)qÁ(zjx)

pμ(xjz)pμ(xjz)xx

zz

x̂̂x

Sampling

ÁÁ
μμ
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Variational auto-encoder

zz

x

μμÁÁ
Recognition 

model
Generative

model

qÁ(zjx)qÁ(zjx) pμ(xjz)pμ(xjz)

(Kingma and Welling, 2014)

Mean-field approach requires analytical solution to maximum
likelihood problem, which is intractable in case of neural network

Use neural network to sample the latent variables z from variational
posterior

VAE was a building block for speaker recognition (Chien and Hsu,
2017)
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Stochastic gradient variational Bayes

L£ = EqÁ(zjx)[f£(x; z)]L£ = EqÁ(zjx)[f£(x; z)]

L£ ' f£(xjz(l))L£ ' f£(xjz(l))

r£L£ ' r£f£(x; z(l))r£L£ ' r£f£(x; z(l))

Objective:
Gradient:

Step1

Step2

Step3

z(l) = ¹z + ¾z¯ ²(l)z(l) = ¹z + ¾z¯ ²(l)

sample ²(l) from N (0; I)sample ²(l) from N (0; I)

Step4

Reduce the variance caused by directly sampling z (Rezende et al.,
2014)
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Neural variational document model

Continuous semantic latent variable model for a document X (Miao
et al., 2016)

X

z

Inference NetworkqÁ(zjX)

pµ(Xjz)

X

Softmax Generative 

Network
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Neural answer selection model

LSTM LSTMLSTM LSTM

LSTM LSTM LSTM LSTM
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Generating sentences from a continuous space

Variational recurrent auto-encoder (VRAE) (?) is

− composed of two RNNs for both encoder and decoder

− developed for unsupervised learning for time series data

− constructed to map data into latent representation

Parameters of variational distribution over latent variable z are
function of the last state of RNN hT

qφ(z|X) = N (µz, diag(σ2
z)), where

[
µz,σ

2
z

]
= f

(q)
φ (hT )

Initial state of RNN decoder is computed by a sample z

h0 = f
(i)
θ (z)

ht+1 = fdec
θ (ht,xt)

xt = f
(o)
θ (ht)
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Variational recurrent auto-encoder

z

x0 x1 x2

x2

x1

x1 x3

x0

RNNs work workRNNs< BOS >

workRNNs < EOS >
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Unsupervised variational recurrent neural network

VAE and RNN are combined by

− incorporating the hidden state ht at time step t into VAE

Stochastic or variational recurrent neural network was constructed for
unsupervised learning (Chung et al., 2015)

Hidden state is expressed for

− RNN
ht = Fw(x′t,ht−1)

− variational RNN (VRNN)

ht = FΘ(x′t, z
′
t,ht−1)

Apply stochastic gradient variational Bayes for optimization

Characterize the variability by using high-level latent random variable
z′t
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Graphical representation: unsupervised VRNN

xt¡1

xt

xt

xt+1

ht¡1 ht

zt
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Feature extractor
Prior network

Feature extractor

Generative 
network

Inference 
network

xtxt

x0
tx0
t

ht¡1ht¡1

p!(ztjht¡1)p!(ztjht¡1)

zt » qÁ(ztjxt;ht¡1)zt » qÁ(ztjxt;ht¡1)

z0tz
0
t

htht

x0
t;ht¡1x0
t;ht¡1

ht¡1ht¡1

x̂t » pμ(xtjzt;ht¡1)x̂t » pμ(xtjzt;ht¡1)
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Supervised VRNN was proposed for speech separation (Chien and
Kuo, 2017) and speech recognition (Chien and Shen, 2017)

− target variable yt is introduced for supervised learning

xt¡1

yt¡1

xt

yt

ht¡1 ht

zt
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Feature extractor
Prior network

Feature extractor

Discriminative 
network

Inference 
network

xtxt

x0
tx0
t

ht¡1ht¡1

p!(ztjxt;ht¡1)p!(ztjxt;ht¡1)

zt » qÁ(ztjxt;yt;ht¡1)zt » qÁ(ztjxt;yt;ht¡1)

z0tz
0
t

htht

x0
t;ht¡1x0
t;ht¡1

ŷt » pμ(ytjht)ŷt » pμ(ytjht)

Feature extractor

ytyt

y0
ty0
t

x0
tx0
t
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Planning long-term future

RNN is usually trained with teacher forcing where

− model is optimized to predict one-step ahead

− local correlation dominates the long-term dependency

− generated samples tend to exhibit local coherence but lack meaningful
global structure

Regularizing the recurrent neural network based on future information
(Serdyuk et al., 2018)

− run twin forward and backward RNNs with no parameter sharing

− encourage hidden state of forward RNN to be close to that of backward
RNN

− allow forward RNN to catch past and future features that are useful in
test time
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Twin network

Forward RNN −→
h t =

−→
f (xt−1,

−→
h t−1)

− prediction of xt using past information pf (xt|x<t) =
−→
ψ(
−→
h t)

Backward RNN ←−
h t =

←−
f (xt+1,

←−
h t+1)

− prediction of xt using future information pb(xt|x>t) =
←−
ψ(
←−
h t)

−→
h t and

←−
h t contain past and future features for predicting xt,

respectively
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Graphical representation
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xt+1xtxt¡1

¡!
h t¡1

¡!
h t

¡!
h t+1

Ã¡
h t¡1

Ã¡
h t

Ã¡
h t+1

Input

Forward

layer

Backward

layer

Output

Lt¡1 Lt Lt+1

83 / 95



Learning objective

Penalizing the distance between forward and backward hidden states
leading to the same prediction

Lt = ‖g(
−→
h t)−

←−
h t‖

− function g(·) is a parameterized affine transformation

− affine transformation gives flexibility for equivalence between
−→
h t and←−

h t

Training criterion

F(θ) =
∑
t

{log pf (xt|x<t) + log pb(xt|x>t)− αLt}

− backward network is discarded during inference
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Markov recurrent neural network

A large-scale RNN is hard to train and prone to be overfitting

A single path of hidden states ht is insufficient to capture temporal
dependencies

Deterministic hidden state ht in RNN disregards the essence of
stochastic process in sequential data

Markov recurrent neural network (Kuo and Chien, 2018)

− introduces the Markov property to build hidden state of RNN

− incorporates the discrete latent variable into RNN

− constructs the continuous hidden representation diversely

− expresses the highly structured sequential data
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Graphical representation
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Markov recurrent neural network

MRNN is developed to combine recurrent neural networks with
probabilistic interpretation

− introduces a Markov chain in latent representation

− constructs multiple hidden state representation

− conducts the stochastic state-to-state transitions

Hidden state ht is selected from {htk}Kk=1 according to zt

ht = S>t zt

Transition of a stochastic state zt complies with the property of
Markov chain

pφ(zt|z1:t−1,x1:t) = p(zt|zt−1,xt)
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State space

− St ∈ RK×d at each time t consists of all deterministic states
{ht1, . . . ,htK} as basis vectors given by

St ,


h>t1
h>t2

...
h>tK

 =


LSTM(ht−1,xt,θ1)
LSTM(ht−1,xt,θ2)

...
LSTM(ht−1,xt,θK)


State encoder

− each LSTM encoder k is calculated by

itk = σ(Wik[ht−1;xt] + bik)

ftk = σ(Wfk[ht−1;xt] + bfk)

utk = tanh(Wuk[ht−1;xt] + bgk)

ctk = ftk � ct−1 + itk � utk

otk = σ(Wok[ht−1;xt] + bok)

htk = otk � tanh(ctk)
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System implementation
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Learning objective

Parameters of state encoder and logit encoder {θ,φ} are jointly
trained by maximizing the likelihood of D = {xt,yt}Tt=1

p(y1:T |x1:T ) =

T∏
t=1

Ep(z1:t|x1:t)

[
p(yt|x1:t, z1:t)p(z1:t|x1:t)

]

Monte Carlo method for log likelihood is calculated by

T∑
t=1

Epφ(z1:t|x1:t)

[
log pθ(yt|x1:t, z1:t)

]

≈
T∑
t=1

(
1

L

L∑
l=1

log pθ(yt|x1:t, z
(l)
1:t)pφ(z

(l)
1:t|x1:t)

)
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