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B INTRODUCTION

We introduce Financial Market Analysis Generation (FMAG) as a task focused on
creating logical and high-quality analytical reports using market data.
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Figure 2: The overall framework for our Two-stage FKG-based Retrieval (TFR).

We introduce a two-stage FKG-based retrieval-augmented framework shown in Fig. 2.
First, we build a FKG via prompting LLMs. Second, we propose a clusters-based retrieval
method to facilitate the retrieval of triples. Thirdly, we propose a two-stage RAG
method, in which the KG serves as guidance to conduct initial information selection in
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Question
In February 2020, the growth rate of corporate demand deposits was 3.6%, an increase of 8.3 percentage . RESU LTS
%, points from the previous month. (TLDR...) The year-on-year growth rate of M2 was 8.8%, an increase of 0.4
Firancial percentage points from the previous month. The year-on-year growth rate of M1 was 4.8%, a significant Main R It -
Facts increase of 4.8 percentage points from the previous month. On March 15, 2020, the latest value of the energy ain Result:
index was 710, with the price change (TLDR...)  GLM3-turbo + TFR and GLM3-6b (SFT with FKG) + TFR achieved the top scores in
[The year-on-year growth rate of M1 increased primarily due to a rise in corporate demand deposits. J GLM4-score COﬂC', hlgh“ghtlng TFR's advantage in conclusion accuracy.
e GLM3-6b (SFT with FKG) + TFR also led in GLM4-Score Text and Rougel, proving the

Reference [The rebound in M2 year-on-year growth rate is primarily due to lower fiscal deposits and a low base effect]
Concl.

effectiveness of combining SFT with TFR across metrics.
* Results of GLM3-6b (SFT w/0 FKG) suggesting that SFT mainly enhances language
style alignment with reference text rather than improving reasoning in conclusions.

Table 2: The results for different models on our benchmark. GLM4-Score Concl. denotes the consistency score
of the generated text and reference conclusion. GLM4-Score Text denotes the consistency score of generated text
and reference text. TFR denotes our Two-Stage FKG based retrieval method. The highest score 1s denoted in bold,
and the second-highest score 1s underlined.
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Figure 1. A comparison of FMAG between our method and other baselines. Ablation Stud\/-
Challenges in Financial Market Analysis Generatio: » The TFR model improves GLM4 scores, with greater gains for stronger models.
» Crafting high-quality financial market analysis is complex, requiring vast market data » Triple integration in SFT enhances small models' use of retrieved info and boosts
and expert knowledge. accuracy, especially in conclusions.
° Large |anguage models (LLMS) have made strides in aUtOmating text generatiOn for e Models |acking tr|p|e integration iIN SFT show performance dropsl
financial analysis but face issues like hallucinations, knowledge errors, and limited 0.9
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reasoning abilities, affecting the quality and reliability of outputs, see Fig. 1.

Proposed Solution:

* Financial Knowledge Graph (FKG): A comprehensive FKG is constructed using LLMs to
capture complex relationships in financial data.

* Clustering-based Triple Retrieval: A retrieval strategy, enabling efficient retrieval
from FKG automatically extracted

* Two-stage RAG: Combines information selection and subsequent reasoning based
on FKG insights.
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B TASK DESCRIPTION 05-
FMAG is designed to produce analytical texts by reasoning with financial market data,
including financial indicators, trends, and policy impacts. To simulate real-world FMKQG, 0.4

we developed a benchmark focused on bond market analysis.

We structure FMAG as a Question Answering task with explanations.

Each instance in FMAG consists of:

* (Q:Auser question.

* F:Relevant financial facts.

* A:The generated analysis, detailing reasoning steps and conclusions.

Objective:

Given Q and F, FMAG aims to estimate reasoning steps and produce the analysis text A,
formulated as the probability P(A|Q, F).
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Figure 3: Comparative analysis of model performance on our benchmark with different components
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