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Abstract

* LLMs excel at understanding complex contexts, which 1s
especially valuable for handling long-tail queries that are long,
intricate and typically lack sufficient user feedback.

* The challenge 1s that LLMs are too slow for ranking in real
search engines, and some documents are missing.

» To address this, we proposed efficient label generation and
training methods for SLM distillation, validating their
effectiveness through A/B testing on NAVER.

Main Results

* Our method performs especially well on long-tail queries

(NAVER), while also performing well with general queries.

achieving better performance than larger models.

NAVER MS MARCO MIRACL DL19 DL20

nDCG@5 nDCG@10 | nDCG@5 nDCG@10 | nDCG@5 nDCG@10 | nDCG@5 nDCG@10 | nDCG@5 nDCG@10
BM25 0.427 0.520 0.418 0.524 0.473 0.568 0.350 0.396 0.277 0.284
BERT (naive) 0.535 0.655 0.492 0.567 0.671 0.740 0.584 0.601 0.388 0.419
GPT (vanilla) 0.376 0.473 0.387 0.501 0.323 0.445 0.266 0.307 0.204 0.226
MonoBERT 0.639 0.757 0.533 0.600 0.696 0.759 0.656 0.662 0.565 0.560
MonoTS5 (large) 0.650 0.759 0.520 0.589 0.668 0.739 0.633 0.652 0.560 0.565
RankGPT (bert) 0.589 0.696 0.446 0.542 0.623 0.688 0.557 0.565 0.431 0.434
RankGPT (gpt) 0.432 0.535 0.363 0.487 0.284 0.415 0.295 0.327 0.180 0.201
HCX-L (zero-shot) 0.523 0.595 0.686 0.733 0.621 0.620 0.480 0.480

RRA-BERT (ours) |  0.655 0776 | 0.543 0607 [ 0671 0743 |  0.667 0.658 | 0546 0.536

RRA-GPT (ours) 0.620 0.735 0.491 0.548 0.567 0.660 0.521 0.548 0.417 0.421

* The additional layer used during training can be omitted
during inference without any performance degradation,
making it an efficient training method for industry setting.

* In online A/B testing, our final model, RRA-BERT, improved

CTR by 5.63%, top-1 document clicks by 5.9%, and dwell
time by 7.97% compared to the current search results.
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Effectiveness study of TCL using RRA-BERT (left) and the comparison
of inference time ratio and nDCG@10 across four models (right).

Ranking label generation pipeline

* The pre-ranker filters documents based on relative relevance,
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ocuments that are more and less relevant.

LM, the

excluded (missing) documents are labeled as hard negatives.
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RRA-BERT

* RRA-BERT enhances BERT-based ranking by incorporating
Token Selection, which 1dentifies tokens in the document
with meanings similar to those in the query.

* Using a Term Control Layer, signals from selected tokens
are injected into the training process, allowing the model to
focus on key terms while preserving the overall semantic

context.

Score1 + Score2

HT — Concat(h[CLS], hq, h[SEp], th’d)
TCL(HT) — Att@ntiOnmulti-head(HT)
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E, = Embeddingyord(Tokenizer(q))
E; = Embeddingyoq(Tokenizer(d))

Ty.a = {Top,(Sitmgali,:])|i =1,...,n4}

Simgq = E,E5

enhances GPT-based ranking by incorporating a
dense ranking layer and leveraging generative capabilities
for relevance classification and reasoning.

X = Tokenizer(Prompt(q,d))

h<|resp.|> = H[—1,1]; where i is the index of <|Response|>in X

S = Dense(h<|Resp, |>);

H = Decoder(X)

where di, = dhidden, dout = 1
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X = Tokenizer(Prompt(q,d,label|, reasoningl))

Lgen = — Z log Pmodel (Zt|T1, T2, . . ., Tt—1)

L= Lgen + LRankNet + Lecif
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The overview of our label generation pipeline
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