ScaleLLM: A Resource-Frugal LLM
Serving Framework by Optimizing
End-to-End Efficiency

Yuhang Yao, Han Jin, Alay Dilipbhai Shah, Shanshan Han, Zijian Hu, Yide Ran, Dimitris
Stripelis, Zhaozhuo Xu, Salman Avestimehr, and Chaoyang He

o’e TensorOpera Al

Overview of ScaleLLM Serving System

Concurrent Requests ,ék

Users
ScalelLLM Gateway
System & @
Node N = %
Node 1=) w
Replica 1 Replica 2

GPU 2

Engine

]

GPU 3

Responses

c;h

Replica M

o’s TensorOpera Al

Resuable gRPC Connection Pool

Asynchronous Rust runtime

Intelligent Routing

#| Tensor + Expert Parallelization

Quantization
Paged Attention
Replica Parallelization

Continuous Batching

Gateway and serving engine are the key components.

Optimize LLM Serving Engine

Model Parallelization

SesEsssssssssssssssEsssssssssEsy mses
L] L]
" i
h h
L] L]
. .
" "
" "
" i
. .
L] L]
H "
" "

L]

L]

-
HEER
: H
"
1 sMogp,
: : Eﬂiurpar.!re

"
Lessssssssssnssnssnssansssnsnsns bhesssssssssssss

Model Quantization: fp8
Continuous Batching and Batch Scheduler
FlashAttention and PagedAttention

MOE Expert Parallel (EP] - 2

o’s TensorOpera Al

MOE Expert Parallel (EP) - 4

—L. . [

6 J L g |
N,

Evaluation of LLM Serving Latency «%e TensorOpera Al

0.069 20+
B Engine Latency

B Gateway Latency

N Engine Latency
BN Gateway Latency

6.
- 151 Comparisons with the
= two baseline solutions.
g 4 10 ScaleLLM is applied
i without gateway
< optimization.
iJ 2- 5 i
HE Transformers VLLM ScaleLLM 0 vLLM ScaleLLM
Frameworks Frameworks
(a) Concurrency: 4. (b) Concurrency: 256.

Gateway becomes the new bottlenecle after optimizing the Seving Engine

Optimize Gateway Latency o’ TensorOpera Al

Concurrent Requests Node 1
/\ :Illll'.'.l..l‘l.ll.-l.ll..:
J : Replica 1

(Triton Inference Server)

Axum (Rust) Gateway ~

CPU Bound: | E m “ee m
A .
.

Key Features:

Authentication ": lf I] R) [J CPU Bound \]Ob
: — - - N Optimization
. “ee s o~
T Thread Thread Thread Channel e Network /O Bound
and Filtering ¥ | ! J - Job Optimization
Node 1
_ T Replical :
Matwoss O Botmet * (Triton Inference Server) *

(HTTP Connection i .

Connection Pool S m m;

-
.
..

! Data Serialization

Evaluation of LLM Se

rving Latency

TO
Start Concurrenct Requests

Lifecycle of a Single Request ,9\ User 6‘-:\ Gateway ,Y, Engine
0 N £ &8 N9 0
A CREEL SR R A A
I T N Y R B
t0 tl1 t2 t3 t4 t5 t6
Send Request Receive Start End Receive Receive Receive
Request Inference Inference Response First Token Last Token
Lifecycle of Concurrent Requests
o . + Request
I —\ £ Started
0 i :
Concurrency # 4 # 4 Response :
Fully :
0 Received i
ﬁ P e »
+ Elapsed Time - +

Tl
Finsh the Last Pending Request

o’s TensorOpera Al

Send X concurrent
requests and record
the latency

Latency with Streaming Output

o’s TensorOpera Al

Concurrent | Huggingface Endpoint vLLM Endpoint ScaleLLM
Requests TTFT/ms TBT/ms TTFT/ms TBT/ms | TTFT/ms TBT/ms
1 315.6 83.4 48.4 16.5 25.0(1.9x) 8.5 (1.9x)
2 637.2 218.3 51.9 16.7 253 (2.1x) 8.7 (1.9x)
4 1157.8 506.4 55.1 21.1 25.5(2.2x) 10.4 (2.0x)
8 Timeout Timeout 70.2 30.1 259 2. 7x) 12.2.(2.5%)
16 Timeout Timeout 03.1 38.3 26.7 (3.5x) 13.4 (2.9x)
32 Timeout Timeout 135.8 50.1 290.8 (4.5x) 14.6 (3.4x)
64 Timeout Timeout 285.4 70.8 09.4 (2.9x) 16.5 (4.3x)

Smaller TTFT means faster response for the first token and smaller TBT means faster generation of tokens.
Timeout: 90% of the users’ requests cannot complete in 60s.

«’s TensorOpera Al

Throughput vs Number of Concurrent Requests.

S800(){ mmm Baseline: viim Engine and FastAPI Gateway
N Optimization 1: ScaleLLM Engine and FastAPI Gateway
I Optimization 2: ScalelL LM Engine and Scalel. LM Gateway

Optimizing
gateway is as
important as
optimizing
engine

=)
=
=
=

Throughput (Token/s)
= S

1 2 4 8 16 32 64 128 256
of Concurrency Requests

ScaleLLM on Mixtral-8x7B o’ TensorOpera Al

https://tensoropera.ai/prod/model/mistralai/ScaleLL M-Mixtral-8x7B

https://tensoropera.ai/prod/model/mistralai/ScaleLLM-Mixtral-8x7B

A Bad Inference Optimization Strategy

1. Find something in the paper/arxiv/blog
May not suitable of the current system

1. Spend time understand and integrate
Waste time in research/development

1. Measure the speedup

Maybe the gain is less than 10%

o’s TensorOpera Al

A Good Inference Optimization Strategy =~ ' TensorOpera Al

1. Apply the current infrastructure

Start with the current solution.
1. Profile the efficiency bottleneck

Quantify the impact of each part in the endpoint
1. Always solve the most inefficient bottleneck

Search for the right techniques and apply

Endpoints Throughput Evaluation o’ TensorOpera Al

(O Deeplinfra
Fireworks
__ 4000+ N
% /\ Together Al o with
ul
I Scalel LM] 8 State-of-The-Art
g 2099 endpoints
2
£ 2000- - I . when
3 sending 64
< 1000 a4 concurrent requests
o8B

4 8 16 32 64

1 2
Number of Concurrent Requests

Blueprint: Dynamic Inference Load Balancing System

1 Replica, Tensor Parallel 8

Low concurrency (< 64 requests)

Throughput range: 185 « 5,200 tokens / second
T replicas but tensor parallelism
SRS — to optimize resource utilization for smaller
Concurmency | Throogupet -
[,w ——t B : batch computations.
¢ ST . 1S L&) g
< "o —1 {i "
o 1Ll iB [eeec oeee
Users :§® N, { — High concurrency (2 64 requests)
\[g L, & replicas but tensor parallelism
: effectively distributing the workload to

3| —— Bl :
—] squeeze everything out of available
Node 38 ns— Legend compute.

B & & +q S

wRww »’s TensorOpera Al
0O 00 00 0O

inge: 146 - 17,000 tokens / secon

	Slide 1: ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency
	Slide 2: Overview of ScaleLLM Serving System
	Slide 3: Optimize LLM Serving Engine
	Slide 4: Evaluation of LLM Serving Latency
	Slide 5: Optimize Gateway Latency
	Slide 6: Evaluation of LLM Serving Latency
	Slide 7: Latency with Streaming Output
	Slide 8: Throughput vs Number of Concurrent Requests.
	Slide 9: ScaleLLM on Mixtral-8x7B
	Slide 10: A Bad Inference Optimization Strategy
	Slide 11: A Good Inference Optimization Strategy
	Slide 12: Endpoints Throughput Evaluation
	Slide 13: Blueprint: Dynamic Inference Load Balancing System

