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Overview of ScaleLLM Serving System
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Resuable gRPC Connection Pool

Asynchronous Rust runtime

Intelligent Routing
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Gateway and serving engine are the key components.



Optimize LLM Serving Engine

Model Parallelization
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Model Quantization: fp8
Continuous Batching and Batch Scheduler
FlashAttention and PagedAttention
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Evaluation of LLM Serving Latency «%e TensorOpera Al
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Gateway becomes the new bottlenecle after optimizing the Seving Engine



Optimize Gateway Latency o’ TensorOpera Al
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Evaluation of LLM Se

rving Latency
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Send X concurrent
requests and record
the latency



Latency with Streaming Output
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Concurrent | Huggingface Endpoint vLLM Endpoint ScaleLLM
Requests TTFT/ms TBT/ms TTFT/ms TBT/ms | TTFT/ms TBT/ms
1 315.6 83.4 48.4 16.5 25.0(1.9x) 8.5 (1.9x)
2 637.2 218.3 51.9 16.7 253 (2.1x) 8.7 (1.9x)
4 1157.8 506.4 55.1 21.1 25.5(2.2x) 10.4 (2.0x)
8 Timeout Timeout 70.2 30.1 259 2. 7x) 12.2.(2.5%)
16 Timeout Timeout 03.1 38.3 26.7 (3.5x) 13.4 (2.9x)
32 Timeout Timeout 135.8 50.1 290.8 (4.5x) 14.6 (3.4x)
64 Timeout Timeout 285.4 70.8 09.4 (2.9x) 16.5 (4.3x)

Smaller TTFT means faster response for the first token and smaller TBT means faster generation of tokens.
Timeout: 90% of the users’ requests cannot complete in 60s.
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Throughput vs Number of Concurrent Requests.
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Optimizing
gateway is as
important as
optimizing
engine
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ScaleLLM on Mixtral-8x7B o’ TensorOpera Al

https://tensoropera.ai/prod/model/mistralai/ScaleLL M-Mixtral-8x7B



https://tensoropera.ai/prod/model/mistralai/ScaleLLM-Mixtral-8x7B

A Bad Inference Optimization Strategy

1. Find something in the paper/arxiv/blog
May not suitable of the current system

1. Spend time understand and integrate
Waste time in research/development

1. Measure the speedup

Maybe the gain is less than 10%
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A Good Inference Optimization Strategy =~ ' TensorOpera Al

1. Apply the current infrastructure

Start with the current solution.
1. Profile the efficiency bottleneck

Quantify the impact of each part in the endpoint
1. Always solve the most inefficient bottleneck

Search for the right techniques and apply



Endpoints Throughput Evaluation o’ TensorOpera Al
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Blueprint: Dynamic Inference Load Balancing System

1 Replica, Tensor Parallel 8

Low concurrency (< 64 requests)

Throughput range: 185 « 5,200 tokens / second
T replicas but tensor parallelism
SRS — to optimize resource utilization for smaller
Concurmency | Throogupet -
[,w ——t B : batch computations.
¢ ST . 1S L&) g
< "o —1 {i "
o 1Ll iB [eeec oeee
Users :§® N, { — High concurrency (2 64 requests)
\[ g L, & replicas but tensor parallelism
: effectively distributing the workload to

3| —— Bl :
—] squeeze everything out of available
Node 38 ns— Legend compute.

B & & +q S

wRww »’s TensorOpera Al
0O 00 00 0O

inge: 146 - 17,000 tokens / secon




	Slide 1: ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency
	Slide 2: Overview of ScaleLLM Serving System 
	Slide 3: Optimize LLM Serving Engine
	Slide 4: Evaluation of LLM Serving Latency 
	Slide 5: Optimize Gateway Latency 
	Slide 6: Evaluation of LLM Serving Latency 
	Slide 7: Latency with Streaming Output
	Slide 8: Throughput vs Number of Concurrent Requests.
	Slide 9: ScaleLLM on Mixtral-8x7B 
	Slide 10: A Bad Inference Optimization Strategy
	Slide 11: A Good Inference Optimization Strategy
	Slide 12: Endpoints Throughput Evaluation
	Slide 13: Blueprint: Dynamic Inference Load Balancing System 

