SAAS: Solving Ability Amplification Strategy for Enhanced Mathematical Reasoning in Large Language Models

Hyeonwoo Kim^{1*}, Gyoungjin Gim^{1*}, Yungi Kim^{1*}, Jihoo Kim¹ Byungju Kim², Wonseok Lee², Chanjun Park^{1†}

{choco_9966, gyoungjin.gim, eddie, jerry, chanjun.park}@upstage.ai {peyton.kim, jack.lee}@mathpresso.com

- The paper introduces **Solving Ability Amplification Strategy (SAAS)**, a novel approach to enhance **mathematical reasoning** in large language models (LLMs)
- It combines Chain-of-Thought (CoT) and Program-of-Thought (PoT) learning strategies, transitioning from logical reasoning to programmatic execution to amplify problem-solving capabilities
- The empirical evaluation shows that SAAS outperforms other models on challenging mathematical tasks

- The study aims to overcome the limitations of LLMs in mathematical reasoning, which is essential for applications requiring logical thinking and problem-solving
- Current methods like CoT can improve reasoning but lead to computational errors, while PoT focuses on accurate execution but lacks reasoning ability
- The SAAS approach addresses these issues by sequentially integrating CoT and PoT learning

SAAS (Solving Ability Amplification Strategy)

Overview of SAAS

Figure 1: Overview of **SAAS** (Solving Ability Amplification Strategy) with two core strategies: i) sequential learning strategy; ii) cognitive retention strategy.

Dataset

Training Settings

Figure 2: Overall procedure of the synthetic data generation.

Seed Dataset	Rationale	Models	Size
MetaMathQA	СоТ	GPT, WizardMath	465K
MATH, GSM8K	CoT	WizardMath	300K
QANDA	CoT	WizardMath	120K
MetaMathQA	РоТ	ToRA	60K
MATH, GSM8K	PoT	ToRA	226K
MathInstruct	PoT	ToRA	38K
QANDA	PoT	ToRA	12K

Table 1: Summary of synthetic datasets

- RQ1: Does SAAS quantitatively outperform its competitors for solving challenging mathematical problems?
- **RQ2:** Are two core strategies of SAAS effective in improving the accuracy?
- **RQ3:** Is SAAS effective in solving not only basic but also challenging mathematical problems?
- **RQ4:** Does sequential learning that transitions from CoT learning to PoT learning help improve both the mathematical reasoning and computational accuracy?

RQ1: Does SAAS quantitatively outperform its competitors for solving challenging mathematical problems?

Model	Size	GSM8K	MATH	GSM-Hard	SVAMP	TabMWP	ASDiv	MAWPS	Avg.
	General Models								
GPT-4	· ·	92.0	45.2	64.7	93.1	67.1	91.3	97.6	78.3
GPT-4 (PAL)	· ·	94.2	51.8	77.6	94.8	95.9	92.6	97.7	86.4
ChatGPT	· ·	80.8	35.5	55.9	83.0	69.1	87.3	94.6	72.3
ChatGPT (PAL)	· ·	78.6	38.7	67.6	77.8	79.9	81.0	89.4	73.3
Claude-2	· ·	85.2	32.5	-			-	-	
PaLM-2	540B	80.7	34.3					-	
LLaMa-2	7B	13.3	4.1	7.8	38.0	31.1	50.7	60.9	29.4
Platypus-2	7B	14.4	5.4	8.6	36.7	26.5	47.9	58.4	28.3
CodeLLaMa (PAL)	7B	34.0	16.6	33.6	59.0	47.3	61.4	79.6	47.4
SOLAR-1	10.7B	25.8	8.0	17.1	59.3	33.6	55.1	68.4	38.1
LLaMa-2	13B	24.3	6.3	13.6	43.1	39.5	56.3	70.4	36.2
Platypus-2	13B	23.7	7.1	14.3	50.7	45.3	55.1	69.6	38.0
CodeLLaMa (PAL)	13B	39.9	19.9	39.0	62.4	59.5	65.3	86.0	53.1
CodeLLaMa (PAL)	34B	53.3	23.9	49.4	71.0	63.1	72.4	91.5	60.7
LLaMa-2	70B	57.8	14.4	36.0	73.6	57.5	76.0	92.4	58.2
Platypus-2	70B	45.9	15.0	24.6	74.3	47.3	72.7	91.1	53.0
Mathematics Domain-Specific Models									
WizardMath	7B	54.9	10.7	20.6	57.3	38.1	59.1	73.7	44.9
MetaMath	7B	66.5	19.8	-		-	-	-	
MuggleMATH	7B 7B	68.4	-	-	÷.,	-	-	44.0	•
Toolformer MathCoder	7B 7B	64.2	23.3	-	29.4		40.4	44.0	
MathCoder-CODE	7B	67.8	30.2	-			-		
MAmmoTH	7B	53.6	31.5						
MAmmoTH-CODE	7B	59.4	33.4						
ToRA	7B	68.8	40.1	54.6	68.2	42.4	73.9	88.8	62.4
SAAS	7B	74.3	43.2	58.3	74.3	49.6	77.3	93.6	67.2
ToRA-CODE	7B	72.6	44.6	56.0	70.4	51.6	78.7	91.3	66.5
SAAS-CODE	7B	74.8	45.2	<u>58.1</u>	73.6	64.0	80.4	93.8	70.0
SAAS	10.7B	82.0	50.1	64.9	85.0	72.5	87.5	95.7	76.8
WizardMath	13B	63.9	14.0	28.4	64.3	46.7	65.8	79.7	51.8
MetaMath	13B	72.3	22.4	-	-	-	-	-	· ·
MuggleMATH MathCoder	13B 13B	74.0 72.6	29.9	-	-	-	-	-	
MathCoder-CODE	13B	74.1	35.9	-					
MAmmoTH	13B	62.0	34.2						
MAmmoTH-CODE	13B	64.7	36.3						
ToRA	13B	72.7	43.0	57.3	72.9	47.2	77.2	91.3	65.9
SAAS	13B	76.6	46.2	61.6	77.8	58.2	80.5	94.3	70.7
ToRA-CODE	13B	75.8	48.1	60.5	75.7	65.4	81.4	92.5	71.3
SAAS-CODE	13B	<u>79.4</u>	50.6	<u>61.6</u>	<u>80.6</u>	<u>68.2</u>	84.5	<u>95.4</u>	743
MathCoder-CODE	34B	81.7	45.2	-	-	-	-	-	·
MAmmoTH-CODE	34B	72.7	43.6		-	-			1.1
ToRA-CODE	34B	80.7	50.8	63.7	80.5	70.5	84.2	93.3	74.8
SAAS-CODE SAAS-LLEMA	34B 34B	82.9 85.4	52.3 54.7	64.1 67.0	82.8 85.2	73.9 80.2	85.4 87.6	95.2 96.6	76.6
WizardMath	70B	81.6	22.7	50.3	80.0	49.8	76.2	86.2	63.8
MetaMath	70B	82.3	26.6					-	
MuggleMATH	70B	82.3					-		· ·
MathCoder	70B	83.9	45.1		-	-	-		· ·
ToRA	70B	84.3	49.7	67.2	82.7	74.0	86.8	93.8	76.9

Table 2: Accuracies of competitors and our SAAS on the mathematical benchmark datasets. Our SAAS models are shown in purple color.

RQ2: Are two core strategies of SAAS effective in improving the accuracy?

Strategy	GSM8K	MATH
Chain-of-Thought (CoT)	69.7	26.9
Program-of-Thought (PoT)	76.8	47.7
Combination of CoT and PoT	<u>79.0</u>	49.2
SAAS	79.4	50.6
without cognitive retention strategy	<u>79.0</u>	<u>49.6</u>
Reverse SAAS	76.8	47.1
without cognitive retention strategy	69.4	27.6

Table 3: Accuracies of different learning strategies. All improvements are statistically significant with *p*-value ≤ 0.001 .

RQ3: Is SAAS effective in solving not only basic but also challenging mathematical problems?

RQ4: Does sequential learning that transitions from CoT learning to PoT learning help improve both the mathematical reasoning and computational accuracy?

Question: Benjamin is trying to break a combination lock. This particular type of lock has 5 digits from 0 to 9, and Benjamin just happens to know that there can be no repeated digits in the code for this type of lock. How many valid codes are there?

Answer: 30240

Figure 4: Responses of different learning approaches for a given question-answer pair.

- Prioritizing the learning of mathematical reasoning ability via Chain-of-Thought (CoT) learning is helpful for the amplification of problem-solving ability during Program-of-Thought (PoT) learning
- For effective sequential learning, it is necessary to employ a **cognitive retention strategy** that incorporates some data samples from the initial phase into the subsequent phase
- **SAAS (Solving Ability Amplification Strategy)**, which progresses from CoT learning to PoT learning with cognitive retention strategy
- Through extensive experiments with the reputable benchmarks, we demonstrated that SAAS consistently and significantly outperforms all competitor, marking a significant advancement in the field of mathematical reasoning in LLMs

Thank You