

## **RAG-HAT: A Hallucination-Aware Tuning Pipeline for LLM in Retrieval-Augmented Generation**

Juntong Song, Xingguang Wang, Juno Zhu, Yuanhao Wu, Xuxin Cheng, Randy Zhong, Cheng Niu

#### RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented Language Models

Cheng Niu<sup>1</sup>, Yuanhao Wu<sup>1</sup>, Juno Zhu<sup>1</sup>, Siliang Xu<sup>1</sup>, Kashun Shum<sup>1</sup>, Randy Zhong<sup>1</sup>, Juntong Song<sup>1</sup>, and Tong Zhang<sup>2</sup>

> <sup>1</sup>NewsBreak <sup>2</sup>University of Illinois Urbana-Champaign cheng.niu@newsbreak.com



Figure 1: Data gathering pipeline. Taking a data-to-text writing task as an example, our data gathering pipeline includes 2 steps: 1) response generation. We generated responses with multiple LLMs and natural prompts. 2) human annotation. Human labeler annotated hallucinated spans in LLM responses.





### RAGTruth: A Hallucination Corpus for Developing Trustworthy Retrieval-Augmented Language Models

Cheng Niu<sup>1</sup>, Yuanhao Wu<sup>1</sup>, Juno Zhu<sup>1</sup>, Siliang Xu<sup>1</sup>, Kashun Shum<sup>1</sup>, Randy Zhong<sup>1</sup>, Juntong Song<sup>1</sup>, and Tong Zhang<sup>2</sup>

> <sup>1</sup>NewsBreak <sup>2</sup>University of Illinois Urbana-Champaign cheng.niu@newsbreak.com

| Methods                               | QUESTION ANSWERING |        | DATA-TO-TEXT WRITING |           | SUMMARIZATION |      |           | OVERALL |      |           |        |            |
|---------------------------------------|--------------------|--------|----------------------|-----------|---------------|------|-----------|---------|------|-----------|--------|------------|
|                                       | Precision          | Recall | F1                   | Precision | Recall        | F1   | Precision | Recall  | F1   | Precision | Recall | <b>F</b> 1 |
| Prompt <sub>gpt-3.5-turbo</sub>       | 18.8               | 84.4   | 30.8                 | 65.1      | 95.5          | 77.4 | 23.4      | 89.2    | 37.1 | 37.1      | 92.3   | 52.9       |
| Prompt <sub>gpt-4-turbo</sub>         | 33.2               | 90.6   | 45.6                 | 64.3      | 100.0         | 78.3 | 31.5      | 97.6    | 47.6 | 46.9      | 97.9   | 63.4       |
| SelfCheckGPT <sub>gpt-3,5-turbo</sub> | 35.0               | 58.0   | 43.7                 | 68.2      | 82.8          | 74.8 | 31.1      | 56.5    | 40.1 | 49.7      | 71.9   | 58.8       |
| LMvLM <sub>gpt-4-turbo</sub>          | 18.7               | 76.9   | 30.1                 | 68.0      | 76.7          | 72.1 | 23.3      | 81.9    | 36.2 | 36.2      | 77.8   | 49.4       |
| Finetuned Llama-2-13B                 | 61.6               | 76.3   | 68.2                 | 85.4      | 91.0          | 88.1 | 64.0      | 54.9    | 59.1 | 76.9      | 80.7   | 78.7       |

Table 5: The response-level hallucination detection performance for each baseline method across different tasks and different models.

| Methods                      | QUESTION ANSWERING |        | DATA-TO-TEXT WRITING |           | SUMMARIZATION |      |           | OVERALL |      |           |        |      |
|------------------------------|--------------------|--------|----------------------|-----------|---------------|------|-----------|---------|------|-----------|--------|------|
|                              | Precision          | Recall | F1                   | Precision | Recall        | F1   | Precision | Recall  | F1   | Precision | Recall | F1   |
| Prompt Baselinegpt-3.5-turbo | 7.9                | 25.1   | 12.1                 | 8.7       | 45.1          | 14.6 | 6.1       | 33.7    | 10.3 | 7.8       | 35.3   | 12.8 |
| Prompt Baselinegpt-4-turbo   | 23.7               | 52.0   | 32.6                 | 17.9      | 66.4          | 28.2 | 14.7      | 65.4    | 24.1 | 18.4      | 60.9   | 28.3 |
| Finetuned Llama-2-13B        | 55.8               | 60.8   | 58.2                 | 56.5      | 50.7          | 53.5 | 52.4      | 30.8    | 38.8 | 55.6      | 50.2   | 52.7 |

Table 6: The span-level detection performance for each baseline method across different tasks and different models.



### **Output Non-Hallucinated Content**

# Hallucinations still persist, even after the model has undergone delicate instruction tuning ...

| Model                         | QUESTION ANSWERING |        |         | DATA-TO-TEXT WRITING |        |         | SUMMARIZATION |        |         | OVERALL |        |
|-------------------------------|--------------------|--------|---------|----------------------|--------|---------|---------------|--------|---------|---------|--------|
|                               | # Resp.            | # Span | Density | # Resp.              | # Span | Density | # Resp.       | # Span | Density | # Resp. | # Span |
| GPT-3.5-turbo-0613            | 75                 | 89     | 0.12    | 272                  | 384    | 0.18    | 54            | 60     | 0.05    | 401     | 533    |
| GPT-4-0613                    | 48                 | 51     | 0.06    | 290                  | 354    | 0.27    | 74            | 80     | 0.08    | 406     | 485    |
| Llama-2-7B-chat               | 510                | 1010   | 0.59    | 888                  | 1775   | 1.27    | 434           | 517    | 0.58    | 1832    | 3302   |
| Llama-2-13B-chat              | 399                | 654    | 0.48    | 983                  | 2803   | 1.53    | 295           | 342    | 0.41    | 1677    | 3799   |
| Llama-2-70B-chat <sup>†</sup> | 320                | 529    | 0.40    | 863                  | 1834   | 1.15    | 212           | 245    | 0.26    | 1395    | 2608   |
| Mistral-7B-Instruct           | 378                | 594    | 0.59    | 958                  | 2140   | 1.51    | 617           | 828    | 0.86    | 1953    | 3562   |

Table 3: Hallucination counts and density of models. †: We used 4-bit quantized version of Llama-2-70B-chat.



Reinforcement learning becomes a clear choice when hallucinations still persist, even after the model has undergone delicate instruction tuning.

In RAG-HAT, We conduct Direct Performance Alignment on the selected LLM. It's a widely used technology that can do preference alignment without explicitly training a reward model.

Our choice is based on the following pain points we identified during our investigations:

- First, organizing hallucination mitigation tasks into a preference dataset for reward modeling is challenging, as annotators often struggle with determining which type of hallucination is more severe. In our previous work on RAGTruth, our annotators spent a lot of time struggling to achieve consensus.
- 2. Second, treating "not hallucinating" as a simple preference is problematic because it essentially requires LLMs to be "always correct," which is an overly rigid expectation. To address this pain point, we will introduce some adjustments later to make the alignment process more natural.





Interpretations





Dataset

**Model Hallucinates Less** 

### **Defensive Advice**

... According to their structured data, they offer a variety of beers and a Honey Avocado Ale that is **popular among customers ...**  ... {
 "review\_stars": 5.0,
 "review\_date": "2021-12-17 02:46:28",
 "review\_text": "Beautiful views, great
beer, and family friendly. Highly
recommend the Honey
Avocado Ale



Teaching yourself can be done by learning something new with each task you complete, as mentioned in passage 1. However, taking notes is not always necessary. To learn a language quickly, studying or working abroad can be helpful, as mentioned in passage 2. Wikipedia ...



Some might argue that the claim of the Honey Avocado Ale being "popular among customers" could be considered a hallucination since the JSON data does not explicitly state its popularity ...

Figure 1: An Example of Defensive Advice: The LLM made a minor extension partially based on the provided references. Defensive advice highlights that the statement is not well supported.



Teaching yourself can be done by learning something new with each task you complete, as mentioned in passage 1. However, taking notes is not always necessary. To learn a language quickly, studying or working abroad can be helpful, as mentioned in passage 2. Wikipedia ...

## **Overly Cautious Penalization**





Defensive

Advice

Interpretations



| DATASET                  | METHOD           | Detector              | GPT-4 Turbo           | Human                 | Average               |  |
|--------------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
|                          | Qwen             | 36.9(-)               | 51.3(-)               | 34.4(-)               | 40.9(-)               |  |
| <b>RAGTruth Test Set</b> | Qwen(Regenerate) | -                     | 44.2(\13.8%)          | -                     | 44.2(\13.8%)          |  |
|                          | RAG-HAT          | 22.7( <b>\38.5%</b> ) | 41.3(↓ <b>19.5%</b> ) | 25.7( <b>\25.3%</b> ) | 29.9( <b>\26.9%</b> ) |  |
|                          | Qwen             | 21.3(-)               | 46.7(-)               | -                     | 34(-)                 |  |
| WebGLM 1000              | Qwen(Regenerate) | -                     | 38.8(\17.0%)          | -                     | 38.8(\17.0%)          |  |
|                          | RAG-HAT          | 12.0(↓ <b>43.7%</b> ) | 37.9(↓ <b>19.0%</b> ) | -                     | 24.9( <b>\26.8%</b> ) |  |

Table 3: Hallucination Rate: 1,000-Example WebGLM Set and RAGTruth Test Set (Total 450 Examples): Our detection model cannot fairly benchmark the hallucination rate of the regeneration approach since it serves as the trigger for regeneration.

| PAIRED METHOD                                     | WIN RATE<br>(GPT-4 Turbo) |
|---------------------------------------------------|---------------------------|
| <b>RAG-HAT</b> (full) :: (w/o defensive, w/ OCP)  | 51.5                      |
| <b>RAG-HAT</b> (full) :: (w/o defensive, w/o OCP) | 54.1                      |

Table 6: Impact of Training Dataset Composition onAnswer Quality: Pairwise Comparison

| DATASET          | METHOD          | GPT-4 Turbo         | Human               |  |
|------------------|-----------------|---------------------|---------------------|--|
| RAGTruth Dataset | Qwen<br>RAG-HAT | 41.1<br><b>57.3</b> | 33.2<br><b>40.8</b> |  |
| WebGLM 1000      | Qwen<br>RAG-HAT | 39.5<br><b>58.5</b> | -                   |  |

Table 5: Answer Quality Win Rates: 1,000-ExampleWebGLM Set and RAGTruth Test Set

## **Thank You!**