
❖ Introduction

❖ Implementation of CharacterGLM

➢ Interactive Pointwise Evaluation

• 10 annotators, each tasked with creating two characters to interact with 

12 models for at least 20 dialogue turns.

• Annotators score the models on 7 metrics on a 1 to 5 scale.

➢ Social Traits of Social Characters (Implementation Principal)

• Inherent social profile, including attributes and styles.

• External social behavior, including consistency, human-likeness, and 

engagement.

➢ Character-Based Dialogue Collection (ensuring generalizability)

• Four ways to manually construct a large-scale character-based

dialogue corpus, i.e., human role-playing, synthesis via LLMs, 

extraction from literary resources, and human-prototype interaction.

➢ Model Training (ensuring adaptability)

• Supervised Fine-tuning and Refinement (self-refinement and DPO)

methods are used to optimize the character customization of LLMs.

• CharacterGLM models vary in size from 6B to 66B.

➢ Character-based (aka role-playing) Dialogue System

• Character-based dialogue systems (CharacterDial),  e.g., Character.AI, 

enable users to freely customize social characters for social interactions.

• They are built upon LLMs and allow users to engage with AI in a more 

personal, emotionally supportive manner, addressing a range of 

scenarios from casual chit-chatting to deeper emotional companionship.

➢ Existing Challenges

• The generalizability of social characters across diverse scenarios.

• Existing work builds training corpora only via LLM synthesis or 

extracting from literature resources, with a narrow range of 

character categories, as shown in Table 1.

• The adaptability of social characters in evolving conversations.

• A naive way is to prompt LLMs to play specific characters.

• This way relies only on static profiles and could struggle in the 

later stages of the multi-turn conversations, as shown in Figure 1.

❖ Experiments

Figure 2: Implementation of CharacterGLM. One-to-many means crafting 

multiple dialogues for a single character.

➢ Interactive Pairwise Evaluation

• 10 annotators, each creating 24 characters distributed evenly across 

three categories to interact with 2 models for at least 20 dialogue turns.

• Annotators compare 2 models’ outputs at an overall level.

Table 2: Results of interactive pointwise evaluation.

Table 3: Results of Interactive pairwise evaluation on three character 

categories and three dialogue scenarios.
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➢ Static Pointwise Evaluation
➢ randomly extract 100 sessions containing 100 characters from our 

col- lected data as test data.

❖ Interactive Examples

Table 1: Comparison of our data with related 

datasets on character-based dialogue.

Figure 1: Win-lose rate advantages of our 

tuning-based CharacterGLM-66B against 

tuning-free models by dialogue turn interval 

in the interactive pairwise evaluation

➢ Static Pairwise Evaluation

Table 4: Results of static pointwise evaluation.

Table 5: Results (%) of CharacterGLM-66B-DPO vs. CharacterGLM-66B. 

Improve. is the Win−Lose rate.
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