135

151

152

153

154

155

156

157

158

159

160

161

165

168

Appendix A Used notation

36	We list the notation used throughout the paper
37	\mathbb{V} : vocabulary of words
38	\mathcal{V} : vocabulary of groups
39	w, v: a word
40	F_w : relative frequency of a word w
41	γ_i, γ_j : a group
42	$\mathbb{V} \times \Gamma$: set of all possible pairs (w, γ_i)
43	c_{γ_i} : relative frequency of a group γ_i
44	γ : an assignment (grouping)
45	$H(\gamma)$: unigram entropy of a grouping γ
46	$G\left(c_{\gamma_{i}'}\right)$: partial enropy of a group γ_{i}
47	C: number of groups
48	$[1, \ldots, C]$ - natural numbers from 1 to C
49	\mathbb{N} - natural numbers

Appendix B Omitted proofs

Definition 1 (Matroid). Let Ω be a finite set (universe) and $\mathcal{I} \subseteq 2^{\Omega}$ be a set family (independent sets). A pair $\mathcal{M} = (\Omega, \mathcal{I})$ is called a matroid if

1.
$$\emptyset \in \mathcal{I}$$

- 2. If $Q \in \mathcal{I}$ and $R \subseteq Q$ then $R \in \mathcal{I}$
- 3. For any $Q, R \in I$ with |R| < |Q| there exists $\{x\} \in Q \setminus R$ such that $R \cup \{x\} \in \mathcal{I}$.

Let us denote a family of all grouping sets of $\mathbb{V} \times \mathcal{V}$ as \mathcal{G} .

Proof of Lemma ??. We have to show that $(\mathbb{V} \times$ \mathcal{V}, \mathcal{G}) satisfies three condition from the Definition 1.

- 1. An empty grouping is a grouping.
- 2. Consider an arbitrary $Q \in \mathcal{G}$ and $R \subset Q$. Since Q defines a grouping, for any $(w, \gamma_i) \in$ Q we have $(w\gamma_i) \notin Q$ for all $\gamma_i \neq \gamma_i$. Therefore, for all $(w, \gamma_i) \in R$ we have $(w\gamma_i) \notin R$ given $\gamma_i \neq \gamma_i$ and thus R defines a grouping as well.
- 3. Consider two arbitrary $R, Q \in \mathcal{G}$ with $|R| < \mathcal{G}$ 170 |Q|. Let us denote $\{w \in \mathbb{V} : (w, \gamma_i) \in$ 171 Q for some γ_i as $\pi(Q)$. We claim that |Q| =172 $|\pi(Q)|$. Otherwise, there must exist w such 173 that $(w, \gamma_i), (w, \gamma_j) \in Q$ and $\gamma_i \neq \gamma_j$. How-174 ever, this is forbidden for a set which defines a 175 grouping. Analogously, $|R| = |\pi(R)|$. Since 176 both R, Q are finite, we have $0 < |Q \setminus R| =$ 177 $|\pi(Q)| - |\pi(R)| = |\pi(Q) \setminus \pi(R)|$. Consider 178

an arbitrary $w'\in \pi(Q)\setminus \pi(R)$ and its group $\gamma_{i'}$ in Q; we have $(w', \gamma_{i'}) \in Q \setminus R$. Moreover, since w' is ungrouped by R, we conclude that $R \cup \{(w', \gamma_{i'})\} \in \mathcal{G}$ and finish the proof.

179

180

181

182

183

184

185

186

189

190

191

192

193

Definition 2 (Submodular function). A function $f: 2^{\Omega} \to \mathbb{R}$, where Ω is finite, is submodular if for any $X \subseteq Y \subseteq \Omega$ and any $x \in \Omega \setminus Y$ we have

$$f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y).$$
 18

For any non-negative real x and fixed a > 0, we denote $-(x+a)\log_2(x+a) + x\log x$ as $L_a(x)$.

Proof of Lemma ??. First, we show that H(Q) >0 for all $Q \subseteq \mathbb{V} \times \mathcal{V}$. By definition, we have $H(\emptyset) = 0$. Consider an arbitrary non-empty $Q \subseteq$ $\mathbb{V} \times \mathcal{V}$. For any $\gamma_i \in \mathcal{V}$ we have

$$0 \le c_{\gamma_i} = \sum_{\substack{w \in \mathbb{V}: \\ (w, \gamma_i) \in Q}} F_w \le \sum_{w \in \mathbb{V}} F_w = 1.$$
 194

Therefore, $-c_{\gamma_i} \log c_{\gamma_i} \ge 0$ and

$$\sum_{i=1}^{C} L\left(c_{\gamma_i}\right) \ge 0.$$
 196

Now we establish submodularity. Consider an arbitrary $Q \subseteq \mathbb{V} \times \mathcal{V}, R \subset Q$ and any $(w', \gamma_{i'}) \notin Q$. Let $Q' := Q \cup \{(w', \gamma_{i'})\}, R' := R \cup \{(w', \gamma_{i'})\}.$ We need to show that 200

$$H(R') - H(R) \ge H(Q') - H(Q).$$
 (1)

Let us denote the frequency of the unigram γ_i in Q, Q' as $c_{\gamma_i}(Q), c_{\gamma_i}(Q')$. Since Q and Q' differ only in the group $\gamma_{i'}$ we have

$$H(Q') - H(Q) = -c_{\gamma_{i'}}(Q') \log c_{\gamma_{i'}}(Q) + c_{\gamma_{i'}}(Q) \log c_{\gamma_{i'}}(Q)$$
(2)

Similarly, (2) holds for H(R') - H(R). Thus, to proof (1) it is enough to show

$$-c_{\gamma_{i'}}(R')\log c_{\gamma_{i'}}(R') + c_{\gamma_{i'}}(R)\log c_{\gamma_{i'}}(R) \ge 20$$

$$-c_{\gamma_{i'}}(Q')\log c_{\gamma_{i'}}(Q') + c_{\gamma_{i'}}(Q)\log c_{\gamma_{i'}}(Q) 21$$

We have $c_{\gamma'_i}(Q') = c_{\gamma'_i}(Q) + F_{w'}$; therefore, (2) 211 can be rewritten as $L_{F_{w'}}(c_{\gamma_{i'}}(Q))$. Similarly, 212 $c_{\gamma'_{\cdot}}(R') = c_{\gamma'_{\cdot}}(R) + F_{w'}$ hence we need to establish 213

$$L_{F_{w'}}(c_{\gamma_{i'}}(R)) \ge L_{F_{w'}}(c_{\gamma_{i'}}Q).$$
 (3) 214

195

197

198

199

201

202

203

205

207

For any $(w, i') \in R$ we have $(w, i') \in Q$; thus $c_{\gamma_{i'}}(R) < c_{\gamma_{i'}}(Q)$, and (3) follows from the fact that $L_{F_{w'}}(x)$ is monotone decreasing for all nonnegative real x.

Proof of Theorem ??. By the result (Lee et al., 2009), the Algorithm ?? outputs the map γ' such that

$$\frac{1}{4+4\varepsilon}H(\gamma^*) \le H(\gamma'). \tag{4}$$

where γ^* is the grouping which achieves largest value of *H*. We need to show that the approximation guarantee still holds if $\gamma'(w)$ is undefined for some *w*.

After Step 8, the groupings γ' and γ differ only for the group i_0 ; thus,

$$H(\gamma) - H(\gamma') = L(c_{\gamma_{i_0}}) - L(c_{\gamma'_{i_0}}).$$

Assume that $H(\gamma) - H(\gamma') < 0$. First, there must exist $j \in \mathcal{V}$ such that

$$L\left(c_{\gamma_{j_{0}}'}\right) \leq \frac{1}{C}H\left(\gamma'\right)$$

and thus for the group i_0 we have

$$L\left(c_{\gamma_{i_{0}}'}\right) \leq \frac{1}{C}H\left(\gamma'\right) \tag{5}$$

From (5) and $L(x) \ge 0$ we obtain

$$L\left(c_{\gamma_{i_{0}}}\right) - L\left(c_{\gamma_{i_{0}}'}\right) \ge -L\left(c_{\gamma_{i_{0}}'}\right) \ge -\frac{1}{C}H\left(\gamma'\right)$$

hence

219

221

222

224

226

228

229

235

237

238

240

241

242

243

244

245

$$H(\gamma) \ge \frac{C-1}{C} H(\gamma') \ge \frac{C-1}{4C+4\varepsilon C} H(\gamma^*).$$

For a single matroid constrain, the algorithm from (Lee et al., 2009) runs in time $(|\Omega|)^{O(1)}$ where Ω is the universe. In our case, $\Omega = \mathbb{V} \times \mathcal{V}$ hence the running time is $O(C|\mathbb{V}|)^{O(1)}$. The rest of the Algorithm **??** takes $O(C|\mathbb{V}|)^{O(1)}$ steps, thus we obtain the stated running time and finish the proof.