Appendix A Used notation

We list the notation used throughout the paper
V: vocabulary of words
V: vocabulary of groups
w, v: a word
F,,: relative frequency of a word w
Vi, Vj° @ group
V x T': set of all possible pairs (w,7;)
c+,: relative frequency of a group ~;
~: an assignment (grouping)
H (~y): unigram entropy of a grouping =y
G <c7}> : partial enropy of a group -y;
C': number of groups
[1,...,C] - natural numbers from 1 to C
N - natural numbers

Appendix B Omitted proofs

Definition 1 (Matroid). Let €2 be a finite set (uni-
verse) and I C 2% be a set family (independent
sets). A pair M = (Q,T) is called a matroid if
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3. Forany Q, R € I with |R| < |Q)| there exists
{z} € Q\ R suchthat RU{z} € T.

Let us denote a family of all grouping sets of
VxVasg.

Proof of Lemma ??. We have to show that (V x
V,G) satisfies three condition from the Defini-
tion 1.

1. An empty grouping is a grouping.

2. Consider an arbitrary @ € G and R C Q.
Since @ defines a grouping, for any (w, ;) €
@ we have (wv;) ¢ Q for all v; # ;. There-
fore, for all (w,v;) € R we have (wvy;) ¢ R
given vy; # ; and thus R defines a grouping
as well.

3. Consider two arbitrary R, ) € G with |R| <
|Q]. Let us denote {w € V : (w,v;) €
Q for some ~;} as 7(Q). We claim that |Q| =
|7(Q)]. Otherwise, there must exist w such
that (w, y;), (w,v;) € @ and y; # ;. How-
ever, this is forbidden for a set which defines a
grouping. Analogously, |R| = |7(R)|. Since
both R, ) are finite, we have 0 < |Q \ R| =
7(Q)| — I=(R)] = 7(Q) \ w(R)|. Consider

an arbitrary w’ € w(Q) \ 7(R) and its group
v in @Q; we have (w', ;) € Q\ R. Moreover,
since w’ is ungrouped by R, we conclude that
RU{(w',7y)} € G and finish the proof.
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Definition 2 (Submodular function). A function
f: 2% = R, where S is finite, is submodular if for
any X CY C Qandany x € Q\ 'Y we have

fXU{a}) - f(X) = f(Y U{x}) = f(Y).

For any non-negative real z and fixed a > 0, we
denote —(z + a)logy(x + a) + xlogx as L, (z).

Proof of Lemma ??. First, we show that H(Q) >
0 for all @ C V x V. By definition, we have
H () = 0. Consider an arbitrary non-empty ) C
V x V. For any ; € V we have

0<ec,= Y F,<> Fy=1

weV: weV

Therefore, —c,, log ¢y, > 0 and

c
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Now we establish submodularity. Consider an
arbitrary Q C VxV, R C @ and any (w', ;1) ¢ Q.
Let @ := QU {(vw,v)}, R = RU{(w,vi)}.
We need to show that

H(R') - H(R) > HQ) - H(Q). (D

Let us denote the frequency of the unigram ~y; in

Q, Q" as ¢,,(Q), ¢y, (Q'). Since Q and Q" differ
only in the group v, we have
H(Q') - H(Q) =
- C'Yq',/ (Q/) IOg C'Yi/ (Q) + C’Yi/ (Q) 10g C’Yi/ (Q)
2

Similarly, (2) holds for H(R') — H(R). Thus, to
proof (1) it is enough to show
—Cy, (R')log Cy,y (R) + ¢y, (R)logcy, (R) >
—C, (Q/) log Cryr (Q/) + Cy, (Q)log Cry Q)

We have c,/(Q') = ¢,/(Q) + Fyy; therefore, (2)
can be rewritten as Lg ,(cy,(Q)). Similarly,
¢y (R') = ¢ (R)+ Fyy hence we need to establish

Lp, (cy, (R) = LF,, (¢y, Q). 3)



For any (w,i’) € R we have (w,i) € Q; thus
vy, (R) < ¢y, (Q), and (3) follows from the fact
that Lr ,(x) is monotone decreasing for all non-
negative real x. O

Proof of Theorem ??. By the result (Lee et al.,
2009), the Algorithm ?? outputs the map ' such
that
1
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H(y") < H(Y). 4)

where v* is the grouping which achieves largest
value of H. We need to show that the approxima-
tion guarantee still holds if 7/(w) is undefined for
some w.

After Step 8, the groupings +' and ~ differ only
for the group ig; thus,

Hy)-H()=L (C%.O) —L (c,% ) .

0

Assume that H () — H(v') < 0. First, there must
exist § € V such that

L(e) = GH )

and thus for the group ¢y we have

L) <)

From (5) and L(z) > 0 we obtain

Cc-1 , Cc-1
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For a single matroid constrain, the algorithm
from (Lee et al., 2009) runs in time (\Q|)O(1) where
(2 is the universe. In our case, ) = V x V hence
the running time is O(C|V|)®M). The rest of the
Algorithm ?? takes O(C[V|)°™) steps, thus we
obtain the stated running time and finish the proof.
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