
A Data Collection001

A.1 Datasets002

We collect human judgments of correctness for two003

GenQA datasets, MS-MARCO (Bajaj et al., 2016)004

and AVSD (Alamri et al., 2019). We describe the005

properties of each dataset in this section.006

MS-MARCO MS-MARCO is a large-scale en-007

glish machine reading comprehension dataset that008

provides ten candidate passages for each question.009

The model should consider the relevance of the010

passages for the given question and answer the011

question. One of the main features of this dataset012

is that it contains free-form answers that are ab-013

stractive. MS-MARCO provides two tasks, Natural014

Language Generation (NLG) task and Q&A task.015

For the NLG task, the model should generate an016

abstractive summary of the passages for given ques-017

tions, which is a well-formed answer rather than018

an answer span in the passage. Although the Q&A019

task also provides some abstractive answers, most020

of the answers are short and do not contain the con-021

text or rationale of the question. Hence, we use the022

NLG subset of MS-MARCO dataset as a GenQA023

dataset to study the metrics for GenQA. Also, we024

use the training set of Q&A subset to train and025

evaluate KPQA, since most of the samples in this026

subset has exact answer spans in the passage like027

SQuAD.028

Audio Visual Scene-aware Dialog (AVSD) To029

study more general metrics for GenQA, we also030

use a multimodal GenQA dataset for our work. Au-031

dio Visual Scene-aware Dialog (AVSD) is a multi-032

modal dialogue dataset composed of QA pair about033

Charades videos. Although the name of the dataset034

contains dialog, all of the dialog pairs are com-035

posed of questions answering about a video. The036

task of this dataset is to generate an answer for a037

question about a given video, audio, and the history038

of previous turns in the dialog. In other words, this039

task is to generate a free-form answer for a given040

multimodal context, which can be considered as041

GenQA.042

A.2 Instructions to Annotators043

The full instructions to annotators in MTurk are044

shown in Figure 1. We hire the annotators whose045

HIT approval rate are higher than 95% and pay046

$0.03 for each assignment.047

Dataset Model BLEU-1 ROUGE-L

MS-MARCO UniLM 60.2 63.1
MHPGM 43.7 53.9

AVSD MTN 67.3 52.6
AMF 62.6 48.7

Table 1: Performance of the model we trained to gener-
ate answers on develepment set of each dataset

A.3 Models 048

To investigate the performance of automatic met- 049

rics, we gather pairs of a sentence, {generated an- 050

swer, reference answer}. Collecting high-quality 051

answer candidates for a given context and question 052

is an essential step; thus, we choose two models 053

for each dataset from the latest research in the lit- 054

erature. We train two models UniLM (Dong et al., 055

2019) and MHPGM (Bauer et al., 2018) for MS- 056

MARCO dataset. For AVSD dataset, we train two 057

models MTN (Le et al., 2019) and AMF (Alamri 058

et al., 2018). We present the performance of each 059

model we trained in Table 1. We briefly describe 060

the models and the training details to generate the 061

answer for two datasets. 062

UniLM UniLM, which stands for unified lan- 063

guage model pre-training, is a powerful seq2seq 064

model based on pre-trained representations from 065

BERT (Devlin et al., 2019). UniLM is a pre-trained 066

transformer network that can be easily fine-tuned 067

for NLU and NLG. UniLM achieves higher perfor- 068

mance for various NLG tasks, such as abstractive 069

summarization and question generation. We fine- 070

tune UniLM for GenQA similar to the way fine- 071

tuning UniLM to NLG, where source sequences are 072

each question and paragraphs, the target sequence 073

is an answer. We add [SEP] tokens between the 074

question and each paragraph. Then, we fine-tune 075

UniLM for 3 epochs with this setting using the 076

public code1. 077

MHPGM MHPGM, which stands for multi-hop 078

pointer generator networks, uses multi-hop reason- 079

ing QA model that can integrate commonsense in- 080

formation. This model uses pointer-generator de- 081

coder to generate the answer. We train the model 082

for three epochs with batch size 24 using the public 083

code2. 084

1https://github.com/microsoft/unilm
2https://github.com/yicheng-

w/CommonSenseMultiHopQA
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Figure 1: Instruction for MTurk workers

MTN MTN (Le et al., 2019), which is a mul-085

timodal transformer encoder-decoder framework,086

is a state-of-the-art model for AVSD. MTN em-087

ploys multimodal attention blocks to fuse multi-088

ple modalities such as text, video, and audio. We089

train 10 epochs with batch size 256 and generate090

the answers for the testset released in the DSTC7091

workshop (Alamri et al., 2018) using the publicaly092

available code3.093

AMF AMF is an Attentional Multimodal Fu-094

sion based model (Hori et al., 2017) introduced095

as a baseline system for DSTC7 AVSD work-096

shop (Alamri et al., 2018), It is composed of RNN097

and multimodal attention architecture. This model098

encode the multimodal inputs with LSTM (Gers099

et al., 2000) and fuse the information with modality-100

dependent attention mechanism. We train this101

model with 15 epochs with batch size 64 using102

the public code4.103

B Further Experiments104

B.1 Correlation by Models105

The dataset we collect has human judgments on a106

generated answer from two models for each dataset;107

thus we can observe how the performance of each108

metric depends on the type of GenQA model. The109

experimental results in Table 2 show that our pro-110

posed metric outperforms other metrics in both of111

the GenQA models for each dataset.112

C Experimental Details113

In this section, we describe experimental details114

that are not mentioned in the previous sections in-115

cluding some items in the reproducibility checklist.116

C.1 Reproducibility Checklist117

Source Code We provide the source code for118

both training KPQA and computing KPQA metric119

3https://github.com/henryhungle/MTN
4https://github.com/dialogtekgeek/

AudioVisualSceneAwareDialog

as a supplementary material. We will publicly re- 120

lease the full source with the pre-trained model to 121

easily compute KPQA-metric. 122

Computing Infrastructure We use Intel(R) 123

Core(TM) i7-6850K CPU (3.60 GHz) with 124

GeForce GTX 1080 Ti for the experiments. The 125

software environments are Python 3.6 and PyTorch 126

1.3.1. 127

Average runtime for each approach Each 128

epoch of our training KPQA on average takes 150 129

minutes using the single GPU. For evaluation, it 130

takes 5 minutes. 131

Number of Model Parameters The number of 132

parameters in KPQA model is about 109.4M. 133

Hyperparameters We use max sequence length 134

of 256 for the inputs of KPQA. We use 135

AdamW (Loshchilov and Hutter, 2018) optimizer 136

with learning rate 2e-5, and mini-batch size of 137

16 for all of the experiments. We use bert-base- 138

uncased with additional one fully-connected layer 139

of 768 units and tanh activation function. And then 140

we add a softmax layer after it. We train KPQA 141

for 5 epochs and choose the model that shows the 142

minimum evaluation loss over the development set. 143

We repeat training 5 times for each best-performing 144

model. 145

C.2 Significant Test 146

For all of the correlation coefficients we computed 147

in the paper, we use a t-test using a null hypothesis 148

that is an absence of association to report p-value, 149

which is the standard way to test the correlation 150

coefficient. 151

C.3 KPQA Performance 152

We present the performance of KPQA on keyphrase 153

prediction for evaluation data in Table 3. 154
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Dataset MS-MARCO AVSD

Model UniLM MHPGM MTN AMF

Metric r ρ r ρ r ρ r ρ

BLEU-1 0.369 0.337 0.331 0.312 0.497 0.516 0.655 0.580
BLEU-4 0.173 0.224 0.227 0.26 0.441 0.492 0.579 0.553
ROUGE-L 0.317 0.289 0.305 0.307 0.510 0.528 0.648 0.575
METEOR 0.431 0.408 0.425 0.422 0.521 0.596 0.633 0.608
CIDEr 0.261 0.256 0.292 0.289 0.509 0.559 0.627 0.602
BERTScore 0.469 0.445 0.466 0.472 0.592 0.615 0.701 0.645

BLEU-1-KPQA 0.729 0.678 0.612 0.573 0.687 0.681 0.736 0.673
ROUGE-L-KPQA 0.732 0.667 0.667 0.624 0.681 0.682 0.731 0.700
BERTScore-KPQA 0.696 0.659 0.659 0.655 0.712 0.703 0.738 0.695

Table 2: Pearson Correlation(r) and Spearman’s Correlation(ρ) between various automatic metrics and human
judgments of correctness for MS-MARCO dataset and AVSD dataset. We generate the answers and collect human
judgments for two models on each dataset. All of the results are statistically significant (p-value < 0.01).

Dataset F1

SQuAD 55.81
MS-MARCO Q&A 59.26
HotpotQA 69.28

Table 3: Performance of our keyphrase predictor in de-
velopment set of each dataset.

C.4 BERTScore155

For computing BERTScore we use bert-large-156

uncased-whole-word-masking-finetuned-squad157

variant from (Wolf et al., 2019)5 which is a BERT158

model fine-tuned on QA dataset SQuAD. We159

observe that computing BERTScore through this160

BERT model shows slightly higher correlation161

with human judgments than the BERT model162

without fine tuning. We use the first layer of it163

after the word embedding layer to compute the164

embedding. We experiment among different layers165

and found that the first hidden layer yielded the166

best result. We compute all of the BERTScore167

including original BERTScore and BERTScore168

variants using this BERT model.169
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