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Objectives 
And
Method

Objectives

• Provide an overview of new Machine Translation metrics: characTER, chrF3,
COMET, hLEPOR, Laser, Prism.

• Analyze if and how these metrics correlate at a segment level to the results
of Adequacy and Fluency Human Assessments.

• Analyze how they compare against TER scores and Levenshtein Edit Distance
as well as against each of the other.

Method

1. ​~500 segments (~ 250 UI/UA + ~ 250 Marketing) selected for the
experiment and scored for Adequacy and Fluency

• Adequacy and Fluency: scores from 1 (lowest) to 5 (highest)

• 3 experienced linguists per language (scores averaged)

• Languages: German, Hindi (no model for Prism), Italian, Russian,
Simplified Chinese

2. The same segments were scored using characTER, chrF3, COMET, hLEPOR,
Laser, Prism, TER and Levenshtein Edit Distance

3. Human Assessment scores  and Automatic Scores aligned and analyzed
(Pearson Correlation Coefficient)
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Results
Pearson Correlation Coefficient per 
Metric and Language
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German
Insights

Pearson Correlation Coefficient calculated 
to analyze the correlation between Human 
Assessment and metrics, as well as 
between each one of  the metrics included 
in the study.

• COMET is the metric that achieves the
best correlation with Human
Assessments.

• The second place goes to Prism and
CharacTER, which show comparable
results.

• The third place goes to chrF3.

• Levenshtein Edit Distance and TER
show a worse correlation compared to
the 3 new metrics mentioned above.
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Hindi
Insights

Pearson Correlation Coefficient calculated to 
analyze the correlation between Human 
Assessment and metrics, as well as between 
each one of  the metrics included in the 
study.

• COMET is the metric that achieves the
best correlation with Human
Assessments. The coefficient is >0.50,
this suggests that there is a moderately
high correlation.

• The second place goes to CharacTER.

• The third place goes to Levenshtein Edit
Distance.

• TER shows a worse correlation compared
to the 3 new metrics mentioned above.
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Italian
Insights

Pearson Correlation Coefficient calculated 
to analyze the correlation between 
Human Assessment and metrics, as well as 
between each one of  the metrics 
included in the study.

• The best correlation between Human
Assessments and metric is seen with
COMET.

• The second place goes to chrF3 and
Prism, which show comparable results
(chrF3 better correlates with Fluency,
compared to Prism).

• The third place goes to CharacTER and
hLEPOR, which show comparable
results.

• Levenshtein Edit Distance and TER
show a worse correlation compared to
the 3 new metrics mentioned above.
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Russian
Insights

Pearson Correlation Coefficient calculated to 
analyze the correlation between Human 
Assessment and metrics, as well as between 
each one of  the metrics included in the study.

• COMET is the metric that achieves the
best correlation with Human
Assessments. The coefficient is >0.50 with
Accuracy, this suggests that there is a
moderately high correlation.

• The second place goes to Prism, which
also shows a high correlation, close to
0.50.

• The third place goes to chrF3 and hLEPOR
which show comparable results.

• Levenshtein Edit Distance and TER show a
significantly worse correlation compared
to the 3 new metrics mentioned above.
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Simplified Chinese
Insights

Pearson Correlation Coefficient calculated to 
analyze the correlation between Human 
Assessment and metrics, as well as between 
each one of  the metrics included in the study.

• COMET is the metric that achieves the best
correlation with Human Assessments. The
coefficient is >0.50, this suggests that there
is a moderately high correlation.

• The second place goes to CharacTER, which
show comparable results.

• The third place goes to Prism and hLEPOR,
which also show a high correlation with
Accuracy.

• Levenshtein Edit Distance and TER also
show a good correlation.

• Need to investigate why correlations are
overall better for Chinese.
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Conclusions

• Overall, COMET achieves the highest correlation with Human Assessment for
each language (for some languages >0.50 Pearson correlation coefficient).

• Prism, characTER and chrF3 also show good correlation with Human
Assessment across the board.

• Laser Cosine Similarity score is the only metric which shows a positive
correlation (>0.20) with the number of words in the source segment for every
language. This could suggest that Laser Cosine Similarity might does not perform
well on shorter segments.

• No significant differences were noticed in correlations based on the content
type (Product UI/UA vs Marketing). All metrics achieve at least moderate
correlations (± 0.30).

• All the new metrics analyzed show a better correlation with Human
Assessment per language compared to TER and Levenshtein Edit Distance.
Slightly different observation for Hindi.

• Business implications: ideally, the metric(s) with higher correlation should be
used to evaluate the quality of the raw machine translation output, analyze the
post-editing effort (which is closely related to MTPE discounts) and in quality
estimation. Because we have seen that the preferred metric varies depending on
the language, this could mean to have different “go-to” metrics in place,
depending on the language in scope.
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Further 
Research

1. ​Test the metrics on more languages – what is the best metric for every
language and why? Is it possible and convenient for an LSP to use
different preferred metrics for every language?

2. Establish the acceptability threshold for the most relevant metrics –
what is a good score and what is a bad score?

3. Get a better understanding of the reasons underlying variance of the
same metric across different languages.
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Thank you
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Appendix
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Metrics Definition

Levenshtein Edit Distance: The number of insertions, deletions, substitutions required 
to transform MT output to the human reference translation based on the Levenshtein
algorithm. In our analysis, we normalize this value by the number of characters in the 
MT output.

TER (Translation Edit Rate): is a word-based error metric for machine translation that 
measures the number of edits (insertions, deletions, substitutions and shifts) required 
to change a system output into one of the human references. 

CharacTER: same as TER, but insertions, deletions, substitutions are calculated at the 
character level. The shift edit operation is still performed at word level. Unlike TER, the 
edit distance is normalized by the length of the MT output.

chrF3: F3 score based on character n-grams of size 6. The F3 score can be defined as the 
harmonic mean of precision and recall, with recall having three times more weight than 
precision (β = 3)
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Metrics Definition

hLEPOR: computes the similarity of n-grams between a MT output and a reference translation, taking into account a length penalty, an n-gram 
position difference penalty, and recall.

COMET: a framework to train multilingual MT evaluation models that can function as metrics. For our analysis, we used the publicly available wmt-
large-da-estimator-1719 model, which is trained to predict human judgments from WMT by leveraging sentence embeddings extracted from the 
source, MT output and reference segment.

Prism: uses a multilingual NMT system to score MT outputs conditioned on their corresponding human references. The score is calculated by 
averaging the log-probability for each token in the output assigned by the model.

LASER cosine similarity: LASER is a neural model trained on parallel data from 93 languages open sourced by Facebook in 2019. Sentence embeddings 
produced by its encoder can be compared to measure intra or interlingual semantic similarity using cosine similarity.
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CharacTER ↓

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and CharacTER scores are correlated. A diagonal line indicates a perfect

correlation. The more points close to the line, the stronger the correlation. 
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CHRF3 ↑

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and chrF3 scores are correlated. A diagonal line indicates a perfect

correlation. The more points close to the line, the stronger the correlation. 
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COMET ↑

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and COMET scores are correlated. A diagonal line indicates a perfect

correlation. The more points close to the line, the stronger the correlation. 

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021, Volume 2: MT Users and Providers Track Page 458



hLEPOR ↑

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and hLEPOR scores are correlated. A diagonal line indicates a perfect

correlation. The more points close to the line, the stronger the correlation. 
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LASER ↑

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and LASER cosine similarity scores are correlated. A diagonal line

indicates a perfect correlation. The more points close to the line, the stronger the correlation. 
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Levenshtein ED ↓

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and Levenshtein Edit Distance scores are correlated. A diagonal line

indicates a perfect correlation. The more points close to the line, the stronger the correlation. 
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PRISM ↑

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and PRISM scores are correlated. A diagonal line indicates a perfect 

correlation. The more points close to the line, the stronger the correlation. 

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021, Volume 2: MT Users and Providers Track Page 462



TER ↓

Key:
Avg. Human ratings = Adequacy and Fluency ratings by 3 linguists averaged per segment
Trendline = the degree to which Avg. Human ratings and TER scores are correlated. A diagonal line indicates a perfect 

correlation. The more points close to the line, the stronger the correlation. 
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