
Supplementary Materials
Attentive Multiview Text Representation for Differential Diagnosis

Hadi Amiria,c, Mitra Mohataramib, Isaac S. Kohanec
aDepartment of Computer Science, University of Massachusetts, Lowell

bMIT Computer Science and Artificial Intelligence Laboratory
cDepartment of Biomedical Informatics, Harvard University

Massachusetts, USA
hadi amiri@uml.edu, mitram@mit.edu, isaac kohane@harvard.edu

1 Detailed Model Performance

We illustrate the Interpolated Precision Recall and
P@K, ∀K ∈ {5, 10, 15, 20, 30, 100}, performance
of all competing models for further analysis. The
results in Figures 1 and 2 show that BERT outper-
forms other baselines at almost all recall levels and
across both text and code views. In addition, BERT
performs better on text view than code view; this is
perhaps due to the richer context information that is
available in the text view which allows BERT to in-
corporate salient features (such as negation, hedges,
etc., that are important for differential diagnosis)
in its learning process. The results also show that
SVMrank can effectively combine predictions of
baseline models and it often maintains higher P@K
than other models in case of text view, see Figure 1.
However, it doesn’t perform as well on the code
view; this is perhaps due to the lower performance
of the best-performing model (BERT) on the code
view which, in turn, affects the performance of
SVMrank.

Figures 3 and 4 show the performance of our
model (AMNM) across different views and fu-
sion functions. All versions of AMNM except
AMNMbert-svms (gconv) lead to significant im-
provement against the best performing baseline
(BERT). Furthermore, the fusion functions gdot

outperforms gouter and gconv at most recall and
P@K levels. Figure 5 compare the best AMNM
model (AMNMbert-svms (gdot)) against PhenoTips.

2 Implementation Details

We plan to make our code publicly available to
the research community. In what follows, we de-
scribe detail settings of different models that we
investigated in this research. All competing models
were developed on the same computing infrastruc-
ture (GPU server with 8 Titan GPUs and 90GB of
memory).

BM25: We employed Lucene toolkit with default
parameter settings for our BM25 experiments. We
also experimented with other ranking models in-
cluding Classic TF/IDF Similarity and Divergence
From Randomness (DFR) similarity introduced
in (Amati et al., 2002) in conjunction with differ-
ent normalization approaches which take into ac-
count (a): uniform distribution of term frequency,
(b): term frequency density inversely related to
length, (c): term frequency normalization provided
by Dirichlet prior, (d): term frequency normaliza-
tion provided by a Zipfian relation, and (e): no
normalization, all implemented as part of Lucene
toolkit. BM25 lead to the highest performance on
our dataset.

SVMs: We developed this classifier using
sklearn toolkit;1 we applied grid search over the
following parameters for tunning the classifier and
used Precision as the metric for optimization and
re-fitting the model (note that some of these param-
eters can’t be used simultaneously for optimiza-
tion).

tuned parameters = {’penalty’: [’l1’,
’l2’], ’C’: [0.0001, 0.001, .01, .1,
1, 2], ’class weight’: [’balanced’],
’dual’: [False, True], ’loss’:
[’hinge’,’squared hinge’]}

As for TF/IDF weighting, we set the max num-
ber of features to 20K, max document frequency
to 50% (ignoring terms that occur in more than
50% of inputs) and ngrams to n = [1–2] for both
medical histories and disease descriptions.

BERT: We used default parameter settings of
BERT except for the number of epochs which
was set to a maximum value of 32, and batch
size which was set to 32; BERT obtained its best
model/performance on validation data at iteration

1https://scikit-learn.org



(a) Interpolated Precision-Recall of baselines (text
view)

(b) P@K of baselines (text view)

Figure 1: Baseline Interpolated Precision-Recall and P@K Performance on Text view

(a) Interpolated Precision-Recall of baselines (code
view)

(b) P@K of baselines (code view)

Figure 2: Baseline Interpolated Precision-Recall and P@K Performance on Code view

10 for text view and iteration 7 for code view, which
we used for testing the model. We use BERT
models developed for clinical text (Alsentzer et
al., 2019).

SVMrank: All parameters were set to their de-
fault values except for the parameter that controls
the trade-off between training error and margin (c)
which was chosen from range [0.01–0.96] with step
size of 0.05. The model obtained it’s best perfor-
mance with c = .86 on both text and code views.

AMNM: Similar to BERT, we set the number of
epochs to a maximum value of 32 and batch size
to 32; Our model obtained its best performance
on validation data at iteration 15 for text view and
iteration 10 for code view, which we used for test-
ing the model. We used Adam as optimizer with a
smaller learning rate than that of BERT; we set it to
1e-5. In terms of the fusion network, our CNN em-
ployed average pooling with 250 filters and kernel
size of 3. We note that Max pooling led to slightly
lower performance than average pooling for both
AMNMbert-bert and AMNMbert-svm (gdot).



(a) Interpolated Precision-Recall of
AMNMbert-bert

(b) P@K of AMNMbert-bert

Figure 3: Interpolated Precision-Recall and P@K Performance of our Attentive Multiview Neural Model
AMNMbert-bert across different fusion strategies.

(a) Interpolated Precision-Recall of
AMNMbert-svms

(b) P@K of AMNMbert-svms

Figure 4: Interpolated Precision-Recall and P@K Performance of our Attentive Multiview Neural Model
AMNMbert-svms across different fusion strategies.

(a) Interpolated Precision-Recall of AMNMbert-svms

(gdot) vs PhenoTips
(b) P@K of AMNMbert-svms (gdot) vs PhenoTips

Figure 5: Interpolated Precision-Recall and P@K Performance of our Attentive Multiview Neural Model
AMNMbert-svms with gdot (dot product between attentive embeddings of each input view) versus vs PhenoTips.


