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Appendix A - Proofs of Theorems in Main Paper

Lemma 5.1. For any k, l, ⊗[k;l] distributes over ⊕

Proof. We will proceed by showing that:

A⊗[k;l] (B ⊕ C) = (A⊗[k;l] B)⊕ (A⊗[k;l] C)

Firstly, note that for the left hand side of the equation to be defined, B and C needs to be of
matching ranks, and that B ⊕ C will be the same rank as both B and C. Therefore, if the left
hand side is well defined then both A⊗[k;l] B and A⊗[k;l] C is defined and has matching ranks.
So the right hand side is defined if and only if the left hand side is defined as well.

[A⊗[j;k](B ⊕ C)]i1,...,ik−1,j1,...,jl−1,jl+1,...,jm,ik+1,...,in

=
∑
ik,jl

δ(ik, jl)Ai1,...,in × (B ⊕ C)j1,...,jm

=
∑
ik,jl

δ(ik, jl)Ai1,...,in × (Bj1,...,jm + Cj1,...,jm)

=
∑
ik,jl

δ(ik, jl)(Ai1,...,in ×Bj1,...,jm) + δ(ik, jl)(Ai1,...,in × Cj1,...,jm)

= [(A⊗[k;l] B)⊕ (A⊗[k;l] C)]i1,...,ik−1,j1,...,jl−1,jl+1,...,jm,ik+1,...,in

Theorem 5.4. An item-based description I is correct if

• For every grammar G, the mapping g : DI(G) → DG that maps d′ ∈ DI(G) to the corre-
sponding d ∈ DG is a bijection with an inverse function f .

• For any complete semiring S and weight function w, g and f preserve the values assigned
to a derivation:

V w
G (d) = V w

I(G)(f(d)) and V w
I(G)(d

′) = V w
G (g(d′))

Proof.

V w
I(G)(α) = V w

I(G)(goal, α) =
⊕

D∈innerα(goal)

V w
I(G)(D) =

⊕
D∈DI(G)(α)

V w
G (g(D))



Observe that D ∈ DI(G)(α) iff g(D) ∈ DG(α) since the rules that appear in the leaves of D,
applied from left to right, determines the grammar derivation tree g(D) uniquely via g, and vice
versa. Hence,

V w
I(G)(α) =

⊕
g(D)∈DG(α)

V w
G (g(D)) = V w

G (α)

Theorem 6.1.

V (x) =
⊕

[a1,...,ak]

s.t.
a1,..,ak

x

V (a1)⊗ [V (a2), . . . , V (ak)]

Proof. Recall that by definition, V (x) =
⊕

D∈inner(x) V (D). For any item derivation D, D is
either an axiom or there is some a1, . . . , ak, b s.t. D ∈ inner(a1...akb ). If D is an axiom, then
inner(D) is just a single rule a, and so V (D) = V (a). Else, for each rule a1...ak

x⊕
D∈inner(a1...ak

x
)

V (D) =
⊕

Da1∈inner(a1),...,
Dak∈inner(ak)

V (Da1)⊗ [V (Da2), . . . , V (Dak)]

=

 ⊕
Da1∈inner(a1)

V (Da1)

⊗
 ⊕
Da2∈inner(a2),...,
Dak∈inner(ak)

k⊗
i=2

V (Dai)


=

 ⊕
Da1∈inner(a1)

V (Da1)

⊗
 ⊕
Da2∈inner(a2)

V (Da2), . . . ,
⊕

Dak∈inner(ak)

V (Dak)


= V (a1)⊗ [V (a2), . . . , V (ak)]

Where the last step holds due to the distributive property of the partial semiring.

Since the set inner(x) =
⋃
iDi where Di ∈ inner(a1...akx ) for all inference rules a1...ak

x , we can
write the summation over D ∈ inner(x) as:

V (x) =
⊕

D∈inner(x)

V (D)

=
⊕

[a1,...,ak]

s.t.
a1,..,ak

x

⊕
D∈inner(a1...ak

x
)

V (D)

=
⊕

[a1,...,ak]

s.t.
a1,..,ak

x

V (a1)⊗ [V (a2), V (a3), . . . , V (ak)]

Where the last line is obtained by replacing the inner part of the expression with the equality
obtained from the previous part of the proof.

Lemma 6.2. Let V and Z be defined on a commutative semiring S and let O ∈ outerα(x) and
T ∈ innerα(x). If combining O and T in the obvious way results in the complete derivation D
then

V (D) = V (T )⊗∗ Z(O)



Proof. To simplify notation of the indices, let i stand for a list of indices i1, . . . , in for some n.
We will also use di to denote a list di1, . . . d

i
ni and d to denote d1, . . . ,dn. δ(i, j) =

∏n
k=1 δ(ik, jk).

We will proceed by induction on the parse tree. Base case is where x = goal, T = D and O is
empty. Then V (T ) = V (D) and Z(O) = IS . V (D)⊗∗ IS = V (D) by the definition of IS which
proves the statement.

Otherwise T has a parent tree Tp = 〈y : T1, . . . , Tn〉 where T = Tk. Furthermore, Tp ∈
innerα(y), Op ∈ outerα(y) and by induction hypothesis V (D) = V (Tp)⊗∗ Z(Op).

Since Tp ∈ innerα(y) we know that

V (Tp) = V (T1)⊗ [V (T2), . . . , V (Tm)]

So

V (D) = (V (T1)⊗ [V (T2), . . . , V (Tm)])⊗∗ Z(Op)

The proof progresses by calculating the value for [V (D)]i based on the above term and shows
that this is equal to the value of [V (T )⊗∗ Z(O)]i.

Let:

V (T1) ∈ Se,f V (Ti) ∈ Sei,d
i

Z(Op) ∈ Sd,f ,s V (D) ∈ Ss

Then:

V [(Tp)]d,f = [V (T1)⊗ (V (T2), . . . , V (Tm))]d,f

=
∑
e,e′

V (T1)e,f ×
m∏
i=2

δ(ei, e
′
i)V (Ti)e′i,di

[V (D)]s = [V (Tp)⊗∗ Z(Op)]s =∑
e,e′,d,d′f ,f ′

V (T1)e,f ×

(
m∏
i=2

δ(ei, e
′
i)V (Ti)ei,di

)
× δ(d,d′)δ(f , f ′)Z(Op)d,f ,s

Now we will proceed to prove that this term is equal to V (Tk) ⊗∗ Z(O). Let ITk ∈
Se′k,dk,s,ek,dk,s. We will calculate the value of the outside term in sections. Let A = V (T1) ⊗k



(ITk , V (Tk+1), . . . , V (Tn)). Then,

Ae1,...,ek−1,dk,s,êk,d̂k,ŝ,dk+1,...,dn,f =

Aπ
e1,...,ek−1,dk,dk+1,...,dn,f ,s,êk,d̂k,ŝ

=∑
ek,...,en
e′k,...,e

′
n

V (T1)e,f × δ(ek, e′k)δ(dk, d̂k)δ(s, ŝ)×
m∏

i=k+1

δ(ei, e
′
i)V (Ti)e′i,di

[Aπ ⊗ (V (T2), . . . , V (Tk−1))]d,f ,s,êk,d̂k,ŝ =∑
e,e′

V (T1)e,f ×
n∏
i=2
i 6=k

V (Ti)e′i,di×

δ(e, e′)× δ(ek, êk)× δ(dk, d̂k)× δ(s, ŝ)

[Z(O)]êk,d̂k,ŝ =
∑

e,e′,d,d′

f ,f ′,s,s′

V (T1)e,f ×
n∏
i=2
i 6=k

V (Ti)e′i,di × Z(Op)d′,f ′,s′

× δ(e, e′)× δ(ek, êk)× δ(dk, d̂k)× δ(s, ŝ)
× δ(d,d′)× δ(f , f ′)× δ(s, s′)

[V (Tk)⊗∗ Z(O)]ŝ =∑
e,e′,d,d′

f ,f ′,s,s′

êk,d̂
k,e′′k ,d

k′′

V (Tk)e′′k ,dk
′′ × V (T1)e,f ×

n∏
i=2
i 6=k

V (Ti)e′i,di × Z(Op)d′,f ′,s′

× δ(e, e′)× δ(ek, êk)× δ(dk, d̂k)× δ(s, ŝ)

× δ(d,d′)× δ(f , f ′)× δ(s, s′)× δ(e′′k, êk)× δ(dk
′′
, d̂k)

=
∑

e,e′,d,d′f ,f ′

V (T1)e,f ×
m∏
i=2

V (Ti)ei,di × Z(Op)d,f ,ŝ

× δ(e, e′)× δ(d,d′)× δ(f , f ′)

Which completes the proof. The last simplification step is obtained by replacing êk and e′′k
with ek, d̂k and dk

′′
with dk and s and s′ with ŝ since these need to be equal for any term to

contribute to the final sum. The commutativity of S then allows V (Tk)ek,dk to be moved to its
place in the sequence.

Theorem 6.4. If x is the goal item, then Z(x) = Is. Else,

Z(x) =
⊕

j,a1,..,ak,b s.t.
a1...ak

b
and x=aj

(V (a1)⊗k [Iak , V (ak+1), . . . , V (an)])π

⊗ (V (a2), . . . , V (ak−1))⊗∗ Z(b)

Proof. by definition Z(x) =
⊕

D∈outer(x) Z(D). Either x is a goal item, in which case Z(x) =
Z() = IS .

Otherwise the outer trees outer(x) could be written as the union of outer trees outer
(
k, a1...anb

)
for each rule a1...an

b where ak = x for some k. Hence:

Z(x) =
⊕

j,a1,..,ak,b s.t.
a1...ak

b
and x=aj

⊕
D∈outer(k,a1...anb )

Z(D)



For the inner part of this equation we have:

⊕
D∈outer(k,a1...anb )

Z(D) =

⊕
Db∈outer(b)

⊕
Da1∈inner(a1),...,
Dak−1

∈inner(ak−1)

⊕
Dak+1

∈inner(ak+1),...,

Dan∈inner(an)(
V (Da1)⊗k

[
IDak×dS , V (Dak+1

), . . . , V (Dan)
])π

⊗
(
V (Da2), . . . , V (Dak−1

)
)
⊗∗ Z(Db)

Since ⊕ distributes over ⊗, this can rewritten as⊕
D∈outer(k,a1...anb )

Z(D) =

 ⊕
Da1∈

inner(a1)

V (Da1)⊗k

IDak , ⊕
Dak+1

∈
inner(ak+1)

V
(
Dak+1

)
, . . . ,

⊕
Dan∈

inner(an)

V (Dan)



π

⊗

 ⊕
Da2∈inner(a2)

V (Da2), . . . ,
⊕

Dak−1
∈inner(ak−1)

V (Dak−1
)


⊗∗

⊕
Db∈outer(b)

Z(Db)

And since V (ai) and Z(Db) are defined as the summation of their inner and outer trees
respectively

⊕
D∈outer(k,a1...anb )

Z(D) =

(V (a1)⊗k [Iak , V (ak+1), . . . , V (an)])π ⊗ (V (a2), . . . , V (ak−1))⊗∗ Z(b)

Replacing the inner part of the previous equation with this term gives us the desired equality,
completing the proof.

Appendix B - Inside and outside calculations for looping buckets

In computing the inside and outside values with an item-based description, we assume a pre-
computed ordering over items in the form of buckets. For items x and y, we write bucket(x) ≤
bucket(y) if the value of y depends on the value of x. So far we have assumed that items could
be simply sorted so that no item directly or indirectly depends on itself, and given the inside
and outside formulas accordingly. In this section we give the equivalent formulas for items in
looping buckets. Items in a looping bucket depend on each other and computing their values
might require an infinite sum. Our presentation and proofs both follow that of Goodman (1998).

For an item x in a looping bucket B, let the generation of a derivation tree x to be the
maximum number of items in B that could appear in a single path from the root to a leaf. This
intuitively provides an ordering for processing a potentially infinite number of trees by starting
from generation 0 and incrementally adding larger and larger trees. We will denote the set of
inner trees of x with generation at most g with inner≤(x,B) Adding up the values of all inner



trees of x that have generation at most g then gives us an approximation for the true inner value
of x, and the approximation gets better as g gets larger. Formally, we define a g generation
value for an item x in bucket B as:

V≤g(x,B) =
⊕

D∈inner≤g(x,B)

V (D)

For ω-continuous semirings, the infinite sum is equal to the supremum of the partial sums (Kuich
1997, 613), hence (Goodman 1999, 589):

V (x) =
⊕

D∈inner(x)

V (D) = sup
g
V≤g(x,B)

Fortunately, tensors of semirings of set dimensions are ω-continuous as long as the underlying
semiring is ω-continuous. We give the necessary definitions to establish this property:

Definition 1. (Kuich 1997, 611) A semiring is naturally ordered if there is a partial ordering
v such that x v y iff there is a z s.t. x⊕ z = y.

Definition 2. (Kuich 1997, 612) A naturally ordered complete semiring is ω-continuous if for
any sequence x1, x2, . . . and for any constant y, if for all n,

⊕
0≤i≤n xi v y then

⊕
i xi v y

Notice that for the set of tensors in Sd where d is an arbitrary list of positive integers, if the
underlying semiring has a natural ordering then this could be extended straightforwardly to Sd
by the following rule: X v Y iff Xi v Yi for all indices i. It is straightforward to check that if
the underlying semiring is ω-continuous, then Sd is ω-continuous as well.

Goodman (1999) gives a formula for V≤g(x,B) in order to compute or approximate the supre-
mum. Below we give the analogous formula for partial semirings:

Theorem B.1. For items x in a looping bucket B and the generation g ≥ 1

V≤g(x,B) =
⊕

[a1,...,ak]

s.t.
a1,..,ak

x

Kg(a1, B)⊗ [Kg(a2, B), . . . ,Kg(ak, B)]

Where

Kg(a,B) =

{
V (a) if a /∈ B
V≤g−1(a,B) if a ∈ B

Proof.

V≤g(x,B) =
⊕

D∈inner≤g(x,B)

V (D)

=
⊕

[a1,...,ak]

s.t.
a1,..,ak

x

⊕
Da1∈inner≤g−1(a1,B),...,
Dak∈inner≤g−1(ak,B)

V (〈x : Da1 , . . . Dak〉)

=
⊕

[a1,...,ak]

s.t.
a1,..,ak

x

⊕
Da1∈inner≤g−1(a1,B),...,
Dak∈inner≤g−1(ak,B)

V (Da1)⊗ [V (Da2), . . . , V (Dak)]

=
⊕

[a1,...,ak]

s.t.
a1,..,ak

x

⊕
Da1∈inner≤g−1(a1,B)

V (Da1)

⊗

 ⊕
Da2∈inner≤g−1(a2,B)

V (Da2), . . . ,
⊕

Dak∈inner≤g−1(ak,B)

V (Dak)


=

⊕
[a1,...,ak]

s.t.
a1,..,ak

x

V≤g−1(a1, B)⊗ [V≤g−1(a2, B), . . . , V≤g−1(ak, B)]



Note that if ai is not in the bucket B then V≤g−1(ai, B) = V (ai), hence V≤g−1(ai, B) can be
replaced with Kg(ai, B), completing the proof.

We will follow a similar strategy for computing the outside values of items that belong to a
looping bucket. The only difference is the slight difference in the definition of the generation of
of the tree. If D ∈ outer(x) where x belongs to a looping bucket B, then the generation of D
is maximum number of items that could appear in a single path from the root to x, where x is
included in the count. Let

Z≤g(x,B) =
⊕

D∈outer≤g(x,B)

Z(D)

Theorem B.2. For items x in a looping bucket B and the generation g ≥ 1

Z≤g(x,B) =
⊕

j,a1,..,ak,b s.t.
a1...ak

b
and x=aj

(V (a1)⊗k [Iak , V (ak+1), . . . , V (an)])π

⊗ [(V (a1), . . . , V (ak−1)]⊗∗ Hg(b, B)

Where π is defined as in Theorem 6.4 and

Hg(b, B) =

{
Z(b) if b /∈ B
Z≤g−1(b, B) if b ∈ B

Proof.

Z≤g(x,B) =
⊕

D∈outer≤g(x,B)

Z(D)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b
and x=aj

⊕
D∈outer≤g−1(k,

a1...an
b )

Z(D)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b
and x=aj

⊕
Db∈outer≤g−1(b)

⊕
Da1∈inner(a1),...,
Dak−1

∈inner(ak−1)

⊕
Dak+1

∈inner(ak+1),...,

Dan∈inner(an)(
V (Da1)⊗k

[
IDak×dS , V (Dak+1

), . . . , V (Dan)
])π

⊗
(
V (Da2), . . . , V (Dak−1

)
)
⊗∗ Z≤g(Db, B)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b
and x=aj

 ⊕
Da1∈

inner(a1)

V (Da1)⊗k

IDak , ⊕
Dak+1

∈
inner(ak+1)

V (Dak+1
), . . . ,

⊕
Dan∈

inner(an)

V (Dan)



π

⊗

 ⊕
Da2∈inner(a2)

V (Da2), . . . ,
⊕

Dak−1
∈inner(ak−1)

V (Dak−1
)


⊗∗

⊕
Db∈outer≤g−1(b)

Z≤g−1(Db, B)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b
and x=aj

(V (a1)⊗k [Iak , V (ak+1), . . . , V (an)])π

⊗ [(V (a2), . . . , V (ak−1)]⊗∗ Z≤g−1(b, B)



Like the inner case, note that for an item b not in the looping bucket b, Z≤g−1(b, B) = Z(b),
hence we can replace Z≤g−1(b, B) with Hg(b, B), completing the proof.
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