Appendix

We provide details on our experimental setup and
hyper-parameter tuning in Section A. Section B
and C give additional information on model and the
TABFACT dataset. We give details and results re-
garding our column pruning approach in Section D.
Full results for SQA are displayed in Section E.
Section F shows the accuracy on the pre-training
tasks held-out sets. Section G contains the trigger
words used for identifying the salient groups in the
analysis section.

A Reproducibility

A.1 Hyper-Parameter Search

The hyper-parameters are optimized using a
black box Bayesian optimizer similar to Google
Vizier (Golovin et al., 2017) which looked at vali-
dation accuracy after 8, 000 steps only, in order to
prevent over-fitting and use resources effectively.
The ranges used were a learning rate from 106 to
3 x 10™4, dropout probabilities from 0 to 0.2 and
warm-up ratio from 0 to 0.05. We used 200 runs
and kept the median values for the top 20 trials.

In order to show the impact of the number of
trials in the expected validation results, we fol-
low Henderson et al. (2018) and Dodge et al.
(2019). Given that we used Bayesian optimiza-
tion instead of random search, we applied the boot-
strap method to estimate mean and variance of the
max validation accuracy at 8, 000 steps for differ-
ent number of trials. From trial 10 to 200 we noted
an increase of 0.4% in accuracy and a standard
deviation that decreases from 2% to 1.3%.

A.2 Hyper-Parameters

We use the same hyper-parameters for pre-training
and fine-tuning. For pre-training, the input length is
256 and 512 for fine-tuning if not stated otherwise.
We use 80, 000 training steps, a learning rate of
2e~° and a warm-up ratio of 0.05. We disable
the attention dropout in BERT but use a hidden
dropout probability of 0.07 . Finally, we use an
Adam optimizer with weight decay with the same
configuration as BERT.

For SQA we do not use any search algorithm and
use the same model and the same hyper-parameters
as the ones used in Herzig et al. (2020). The only
difference is that we start the fine-tuning from a
checkpoint trained on our intermediate pre-training
entailment task.

ngs [ICS1][5
+ =+

ave
con_con

ol

Ll

nos [

RO,
+ +
ANK,

+ R N S
R, (R, Crane,] (e,] Crane,] (e,] [®

Figure 1: Input representation for model.

A.3 Number of Parameters

The number of parameters is the same as for BERT:
110M for base models and 340M for Large mod-
els.

A.4 Training Time

We train all our models on Cloud TPUs V3. The
input length has a big impact on the processing
speed of the batches and thus on the overall train-
ing time and training cost. For a BERT-Base
model during training, we can process approxi-
mately 8700 examples per second at input length
128, 5100 at input length 256 and 2600 at input
length 512. This corresponds to training times of
approx. 78 minutes, 133 minutes and 262 min-
utes, respectively.

A BERT-Large model processes approximately
800 examples per second at length 512 and takes
14 hours to train.

B Model

For illustrative purposes, we include the input rep-
resentation using the 6 types of embeddings, as
depicted by Herzig et al. (2020).

C Dataset

Statistics of the TABFACT dataset can be found in
table 1.

Statements Tables
Train 92,283 13,182
Val 12,792 1,696
Test 12,779 1,695
Total 118,275 16,573
Simple 50,244 9,189

Complex 68,031 7,392

Table 1: TABFACT dataset statistics.

5000

4000

3000

Frequency

2000

1000

512 1024
Example length

Figure 2: Input length histogram for TABFACT valida-
tion dataset when tokenized with BERT tokenizer.

D Columns selection algorithm

Let cost(.) € N be the function that computes the
number of tokens given a text using the BERT to-
kenizer, t, the tokenized statement text, ¢, the
text of the column 7. We denote the columns as
(c1, .., cn) ordered by their scores

Vi€ [1,.n —1]f(ci) > flcit1)

where n is the number of columns. Let m be the
maximum number of tokens. Then the cost of the
column must verify the following condition.

Vi € [1.n],¢; € Cy,if
2+ cost(ts) + Xy, cc,, | costlle;) + cost(te,)
j i—

where C, is the set of retained columns at
the iteration i. 2 is added to the condition
as two special tokens are added to the input:
[CLS], ts,[SEP],tcy, ..., tc,. If a current column
¢; doesn’t respect the condition then the column
is not selected. Whether or not the column is re-
tained, the algorithm continues and verifies if the
next column can fit. It follows C, contains the
maximum number of columns that can fit under m
by respecting the columns scoring order.

There is a number of heuristic pruning ap-
proaches we have experimented with. Results are
given in 2.

Word2Vec (W2V) uses a publicly available
word2vec (Mikolov et al., 2013) model' to extract
one embedding for each token. Let Ts be the set
of tokens in the statement and 7T~ the set of tokens
in a column. The cosine similarity for each pair is
given by V(s,c) € Ts x T¢

1 ifs=c
f(s,e)=<2 0 if s or ¢ are unknown
cos(vs,ve) else

'mttps://tfhub.dev/google/tf2-preview/
gnews-swivel-20dim/1

where v; represents the embedding of the token
. For a given column token ¢ we define the rele-
vance with respect to the statement as the average
similarity to every token:

f(Sv C) = AVEseTy:f(s,c)>T f(37 C)

Where 7 is a threshold that helps to remove noise
from unrelated word embeddings. We set 7 to 0.89.
We experimented with max and sum as other ag-
gregation function but found the average to perform
best. The final score between the statement .S and
the column C is given by

f(S,C) = max f(S,c)

ceETe

Term frequencydASinverse document fre-
quency (IWF) Scores the columns’ tokens
proportional to the word frequency in the statement
and offset by the word frequency computed over
all the tables and statements from the training set.

<m

_ TF(ts,c)
~ log(WF(c)+1)

f(ts;c)

Where T'F'(t5, c) is how often the token ¢ occurs
in the statement ¢4, and W F'(c) is the frequency of
c in a word count list. The final score of a column
C'is given by

f(ts,C) = max (log

ceTe

TF(ts,c) >
(WF(c)+1)

Character N-gram (CHAR) Scores columns by
character overlap with the statement. This method
looks for sub-list of worddAZs characters in the
statement. The length of the characters’ list has
a minimum and maximum length allowed. In the
experiments we use 5 and 20 as minimum and max-
imum length. Let L, . be the set of all the over-
lapping characters’ lengths. The scoring for each
column is given by

min(maz(Ls, 5)), 20)
cost(t.)

f(ts,tc) -

https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1
https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1

Method PT Size FT Size Val
TABLE-BERT 512 66.1
OURS 512 512 78.3 102
256 512 78.6 103
128 512 775 103
OURS - HEL 128 512 76.7 +04
128 256 76.3 10.1
128 128 71.0 03
OURS - HEM 256 512 78.8 103
256 256 78.1 10.1
128 512 78.2 104
128 256 77.0 102
128 128 72.7 102
OURS- W2V 128 512 77.7 +03
128 256 76.0 102
128 128 70.6 103
OURS- IWF 128 512 779 100
128 256 77.2 101
128 128 72.7 103
OURS- CHAR 128 512 77.5 102
128 256 74.8 10,1
128 128 68.7 +00

Table 2: Accuracy of different pruning methods: The
heuristic entity linking (HEL) (Chen et al., 2020),
Heuristic exact match (HEM), word-to-vec (W2V), in-
verse word frequency (IWF), character ngram (CHAR)
at different pre-training (PT) and fine-tuning (FT) sizes.
Error margins are estimated as half the interquartile
range.

E SQA

Table 3 shows the accuracy on the first develop-
ment fold and the test set. As for the main results,
the error margins displayed are half the interquar-
tile range over 9 runs, which is half the difference
between the first and third quartile. This range con-
tains half of the runs and provides a measure of
robustness.

F Pre-Training Data

When training on the pre-training data we hold out
approximately 1% of the data for testing how well
the model is solving the pre-training task. In Table
4, we compare the test pre-training accuracy on
synthetic and counterfactual data to models that
are only trained on the statements to understand
whether there is considerable bias in the data. Both
datasets have some bias (i.e. the accuracy without
table is higher than 50%.). Still there is a sufficient
enough gap between training with and without ta-
bles so that the data is still useful.

The synthetic data can be solved almost perfectly
whereas for the counterfactual data we only reach

an accuracy of 84.3%. This is expected as there is
no guarantee that the model has enough informa-
tion to decide whether a statement is true or false
for the counterfactual examples.

Data Model PT Size Valg Valgo
Counterfactual base 128 82.0
Counterfactual w/o table base 128 76.0
Synthetic base 128 94.3
Synthetic w/o table base 128 77.8
Synthetic + Counterfactual base 128 93.7 793
base 256 98.0 83.9
base 512 984 843
Synthetic + Counterfactual large 128 943 81.0

large 256 98.5 86.8
large 512 989 873

Table 4: Accuracy on synthetic (Valg) and counterfac-
tual held-out sets (Val¢) of the pre-traininig data.

In table 5 we show the ablation results when re-
moving the counterfactual statements that lack a
supporting entity, that is a second entity that ap-
pears in both the table and sentence. This increases
the probability that our generated negative pairs are
incorrect, but it also discards 7 out of 8 examples,
which ends up hurting the results.

Data Val
Synthetic 77.6
Counterfactual 75.5
Counterfactual + Synthetic 78.6
Counterfactual (only supported) 73.6
Counterfactual (only supported) + Synthetic 77.1

Table 5: Comparisons of training on counterfactual
data with and without statements that don’t have sup-
port mentions.

G Salient Groups Definition

In table 6 we show the words that are used as mark-
ers to define each of the groups. We first identi-
fied manually the operations that were most often
needed to solve the task and found relevant words
linked with each group. The heuristic was vali-
dated by manually inspecting 50 samples from each
group and observing higher than 90% accuracy.

ALL SEQ Q1 Q2 Q3
Data Size Dev Test Dev Test Dev Test Dev Test Dev Test
MASK-LM Base 60.0103 64.0102 353407 346100 724104 7924106 597104 612104 50541 556407
Counterfactual Base 63.2 +0.7 65.0 +0.5 39.3 +0.6 36.5 +0.6 74.7 403 78.4 404 63.8 412 63.7 403 52.4 +0.7 57.5 +0.7
Synlhetic Base 64.1 +0.4 67.4 +0.2 41.6 +0.8 39.8 +0.4 75.3 +0.7 79.3 +0.1 64.4 +0.6 66.2 +0.2 55.8 +0.7 60.2 +0.6
Counterfactual + Synthetic Base 64.5102 679103 402404 405107 756403 793103 6534106 67.0403 554105 61.1409
Counterfactual + Synthetic Large 680402 71.0404 458103 448108 777106 809495 688104 706103 59.6105 64003

Table 3: SQA dev (first fold) and test results.

ALL is the average question accuracy, SEQ the sequence accuracy,

and QX the accuracy of the X th question in a sequence. We show the median over 9 trials, and errors are estimated

with half the interquartile range .

Slice Words
Aggregations | total, count, average, sum,
amount, there, only
Superlatives first, highest, best,
newest, most, greatest, latest,
biggest and their opposites
Comparatives | than, less, more, better,
worse, higher, lower, shorter, same
Negations not, any, none, no, never

Table 6: Trigger words for different groups.

References

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact: A large-scale
dataset for table-based fact verification. In Proceed-
ings of the International Conference on Learning
Representations, Addis Ababa, Ethiopia.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results.
In Proceedings of Empirical Methods in Natu-
ral Language Processing, pages 2185-2194, Hong
Kong, China. Association for Computational Lin-
guistics.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Elliot Karro, and D. Sculley,
editors. 2017. Google Vizier: A Service for Black-
Box Optimization.

Peter Henderson, Riashat Islam, Philip Bachman,
Joelle Pineau, Doina Precup, and David Meger.
2018. Deep reinforcement learning that matters. In
Association for the Advancement of Artificial Intelli-
gence.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the Association for
Computational Linguistics, pages 4320-4333, On-
line. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their compo-
sitionality. In Proceedings of Advances in Neural
Information Processing Systems, NIPSAAZ13, page
31115AS3119, Lake Tahoe, Nevada. Curran Asso-
ciates Inc.

https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality

