
A Semi-supervised Approach to Generate the Code-Mixed Text using
Pre-trained Encoder and Transfer Learning

Deepak Gupta, Asif Ekbal, Pushpak Bhattacharyya
Indian Institute of Technology Patna, India

{deepak.pcs16, asif, pb}@iitp.ac.in

1 Synthetic Code-Mixed Generation

1.1 Dataset Statistics

We create the synthetic datasets for eight dif-
ferent language pairs: English-Hindi (en-hi),
English-Bengali (en-bn), English-Malayalam (en-
ml), English-Tamil (en-ta), English-Telugu (en-
te), English-French (en-fr), English-German (en-
de) and English-Spanish (en-es). We used the Eu-
roparl parallel corpus (Koehn, 2005) v71 for the
European languages, namely French, German and
Spanish. For Indic languages, namely Hindi, Ben-
gali, Malayalam, Tamil and Telugu, we obtain the
parallel corpus from the multilingual parallel cor-
pus directory2 based on the open parallel corpus3.
We show the detailed statistics of the generated
code-mixed corpus in Table 1.

1.2 Code-mixed Complexity

We measure the complexity if the generated code-
mixed text in terms of the following metrics:

Switch-Point Fraction (SPF) Switch-point are
the point in a sentence where the language of each
side of the words are different. Following Pratapa
et al. (2018); Winata et al. (2019), we compute the
SPF as the number of switch-points in a sentence
divided by the total number of word boundaries.
A sentence having more number of switch points
are more complex as it contains many interleaving
words in different languages.

Code-mixing Index (CMI) It is used to measure
the amount of code mixing in a corpus by account-
ing for the language distribution. The sentence
level CMI score can be computed with the follow-

1https://www.statmt.org/europarl/
2http://lotus.kuee.kyoto-u.ac.jp/WAT/

indic-multilingual/index.html
3http://opus.nlpl.eu/

ing formula:

Cu(x) =
N(x)−max(ℓi ∈ ℓ{wℓi(x)})

N(x)
, (1)

where N(x) is the number of tokens of utterance
x, wℓi is the word in language ℓi. We compute this
metric at the corpus-level by averaging the values
for all sentences. We have reported the SPF and
CMI values for all the language pairs in Table 1.

2 Results and Analysis

2.1 Network Training
The neural code-mixed generation network is
trained to minimize the negative log-likelihood
of the training data. We follow the most widely
used method to train a decoder RNN for se-
quence generation, called the “teacher forcing” al-
gorithm (Williams and Zipser, 1989). We define
y∗ = {y∗1, y∗2, . . . , y∗m} as the ground-truth out-
put sequence for a given input sequence E. The
maximum-likelihood training objective is the min-
imization of the following loss:

Lmle = −
m∑
t=1

log p(y∗t |y∗1, . . . , y∗t−1, E) (2)

2.2 Error Analysis
We also perform thorough analysis of the errors
produced by the system (en-hi) and the way to mit-
igate those errors. The errors are categorized in the
following types:
1. Reference Inaccuracy: The error in word

alignment propagates and leads to the inac-
curate reference code-mixed sentence. Since,
we use synthetic reference code-mixed sen-
tence to train our code-mixed generator it
causes errors in the generated code-mixed
sentence too. This issue can be minimized
by advancing the underlying alignment algo-
rithm.

https://www.statmt.org/europarl/
http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
http://opus.nlpl.eu/

Algorithm 1 Code-Mixed Text Generation
1: Input: a parallel sentence (en-sentence, x-sentence)
2: Output: an equivalent code-mixed sentence (en-x-sentence)
3: procedure getCodeMixedText(en-sentence, x-sentence)
4: en-tokens← tokenize(en-sentence) ▷ Tokenize the English sentence
5: x-tokens← tokenize(x-sentence) ▷ Tokenize the language-x sentence
6: alignment← getAlignment(en-sentence, x-sentence) ▷ Learn the alignment matrix
7: phrases← extractPhrase(en-tokens, x-tokens, alignment) ▷ Phrase Extraction
8: en-x-tokens← x-tokens ▷ Initialize the code-mixed sentence
9: pos← getPartsOfSpeechTags(en-tokens) ▷ Parts-of-speech tagging of English sentence
10: ner← getNERTags(en-tokens) ▷ NER tagging of English sentence
11: noun-phrases← getNounPhrase(en-tokens) ▷ Extraction of noun phrases
12: for (entity, entity-type) in ner do ▷ Looping for each entity in English sentence
13: if entity-type in [`PER', `LOC',`ORG'] and entity in phrases then
14: aligned-phrase = getAlignedPhrase(phrases, entity)
15: en-x-tokens← en-x-tokens.replace(aligned-phrase, entity)
16: end if
17: end for
18: for nphrase in noun-phrase do ▷ Looping for each noun phrase in English sentence
19: aligned-phrase = getAlignedPhrase(phrases, nphrase)
20: en-x-tokens← en-x-tokens.replace(aligned-phrase, nphrase)
21: end for
22: for (token, pos-type) in pos do ▷ Looping for each token of English sentence
23: if pos-type == `ADJ' and token in phrases then
24: aligned-phrase = getAlignedPhrase(phrases, token)
25: en-x-tokens← en-x-tokens.replace(aligned-phrase, token)
26: end if
27: end for
28: en-x-sentence← ‘ ’ .join(en-x-tokens) ▷ Join each token to form the code-mixed sentence
29: return en-x-sentence
30: end procedure

2. Missing/Incorrect Words: This is one of
the common error type, where the model gen-
erated incorrect words/phrase. The missing
or incorrect words cause fluency problem in
the generated code-mixed sentence. We also
observe that themajority of themissingwords
are function words while incorrectly gener-
ated words belong to the content words cat-
egory. E.g.
Generated: इस book समःत Copyright हमारे
पास हӔ ।
Gold: इस book के समःत Copyright हमारे
पास हӔ ।
(Trans: Copyright of this book is owned by
us.) Here the function word के (of) is missing
from the generated code-mixed text.
This error can be reduced by employing the
advance language model (like GPT (Radford

et al., 2019), MASS (Song et al., 2019)) as
decoder in the network.

3. Factual Inaccuracy: The model sometimes
generates the factually incorrect named enti-
ties. We also observe that this type of error
occur in often longer sentences, where the
model is confused to copy/generate the rele-
vant entity in the given context. E.g.
Generated: Bluetooth stack के ूयोग से
BlueZ management|
Gold: BlueZ stack के ूयोग से Bluetooth
management |
(Trans: Bluetooth management using the
BlueZ stack.) Here the entities ‘Bluetooth’
and ‘BleuZ’ are misplaces in the generated
code-mixed text. The factual inaccuracy can
be tackled with the inclusion of knowledge
graph (Zhu et al., 2020), which will help the

Language
Pairs

Parallel
Sentences

Code-Mixed
Sentences Train/Dev/Test SPF CMI

en-es 1,965,734 200,725 196,725/2,000/2,000 68.59 28.80
en-de 1,920,209 192,131 188,131/2,000/2,000 68.41 28.26
en-fr 2,007,723 197,922 193,922/2,000/2,000 68.12 28.40
en-hi 1,561,840 252,330 248,330/2,000/2,000 62.92 23.49
en-bn 337,428 167,893 163,893/2,000/2,000 67.61 25.41
en-ml 359,423 182,453 178,453,371/2,000/2,000 81.84 28.13
en-ta 26,217 12,380 11,380/500/500 78.74 28.16
en-te 22,165 10,105 9,105/500/500 76.19 28.69

Table 1: Statistics of parallel corpus and generated synthetic code-mixed sentences along with the training, devel-
opment and test set distributions. We also show the complexity of the generated code-mixed sentence in terms of
SPF and CMI.

model to generate the factually correct entity
at the decoding step.

4. Code-Mixed Inaccuracy: We observe the
inaccuracy in the generated sentence, where
the model sometimes produces the sentence
which either violates the code-mixed theory
or is unnatural (not human-like). E.g.
Generated: एक Bill और एक Act के बीच
Թा अतंर है |
Gold: एक Bill और एक Act के बीच Թा
difference है |
(Trans: What is the difference between a bill
and an act?) Here the noun word ‘difference’
could not be generated by the model instead
it generate the word ‘अतंर'. However, accord-
ing to code-mixed theory the noun word ‘dif-
ference’ should bemixed to generate the code-
mixed sentence.

5. Rare Language Pairs: We notice that, the
system makes the more errors on the en-ta
and en-te language pairs. It can be understand
by the fact that, we had comparatively lesser
number of samples of these language pairs to
train the system. This error can be reduced by
training the system with sufficient number of
training samples.

6. Others: We categorize the remaining er-
rors in others category. The other type of er-
rors include repeated word, inadequate sen-
tence generation, extra word generation etc.
We also observe that majority of the error
occurred when the input sentence were rel-
atively longer than 12 words. It sense that,
those errors can be further reduced with sen-
tence simplification (Dong et al., 2019) or text
splitting of the longer input sentence.

References
Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. Editnts: An neural
programmer-interpreter model for sentence simplifi-
cation through explicit editing. InProceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3393–3402.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86. Citeseer.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to se-
quence pre-training for language generation. In In-
ternational Conference on Machine Learning, pages
5926–5936.

Ronald J Williams and David Zipser. 1989. A learning
algorithm for continually running fully recurrent neu-
ral networks. Neural computation, 1(2):270–280.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2019. Code-switched lan-
guage models using neural based synthetic data from
parallel sentences. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 271–280, Hong Kong, China.
Association for Computational Linguistics.

Chenguang Zhu, William Hinthorn, Ruochen Xu,
Qingkai Zeng, Michael Zeng, Xuedong Huang, and
Meng Jiang. 2020. Boosting factual correctness

https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026
https://doi.org/10.18653/v1/K19-1026

of abstractive summarization with knowledge graph.
arXiv preprint arXiv:2003.08612.

