Supplementary Material for Continual Learning Long Short Term Memory

Xin Guo*	Yu Tian*	Qinghan Xue
University of Delaware	Rutgers University	IBM
guoxin@udel.edu	yt219@cs.rutgers.edu	qinghan.xue@ibm.com
Panos Lampropoulos	Steven Eliuk	Kenneth Barner
IBM	IBM	University of Delaware
panosl1@ibm.com	steven.eliuk@ibm.com	barner@udel.edu

Xiaolong Wang[†] IBM xiaolong.wang@ibm.com

1 CL-LSTM⁺ Model

We also implement a complex version CL-LSTM⁺, as shown in Fig. 1. Compared to CL-LSTM in which each task k > 1 has an *unique* broadcast module M_k^b and collect module M_k^c , CL-LSTM⁺ allocates *multiple* broadcast modules $M_{k,j}^b$ and collect module $M_{k,j}^c$ for every j < k. The intuition behind this design is to learn *specific* broadcast and collect information between every pair of tasks, instead of learning *general* broadcast and collect information as in CL-LSTM.

Figure 1: CL-LSTM⁺ with three tasks. For the third task, old modules are *frozen* (grey) and $M_3, M_{31}^c, M_{31}^b, M_{32}^c, M_{32}^b$ (yellow) are trained for information sharing. $h_{out}^{(t)}$ is the aggregation of all hidden states.

Similar to the Eq. 10 in the main paper, for CL-LSTM⁺, when current task is k, the hidden state update rule for $1 \le j \le k$ is given by:

$$h_{j}^{(t)} = M_{j}(x^{t}, h_{j}^{(t-1)}) + \sum_{1 \le i < j} M_{j,i}^{c}(h_{i}^{(t-1)}) + \sum_{j < l \le k} M_{l,j}^{b}(h_{l}^{(t-1)}), t \in \{1, 2, \cdots, T\},$$
(1)

2 Different Orders of the Dataset

In order to make our experimental results more convincing, we also investigate different orders in the addressed datasets where we test CL-LSTM , LWF and finetune on Exp1 in the reverse order (WR \rightarrow SNIPS \rightarrow ATIS).

The results are shown in Table 1, while all methods have large performance drop, we found it is due to the forgetting on the largest WR dataset, probably longer training and parameter tuning can alleviate this problem. However, in this reverse order, our method still outperforms others.

3 The Proposed Models with Distillation Loss

We also evaluate the proposed CL-LSTM and CL-LSTM⁺ with additional distillation loss (Hinton et al., 2015), named as CL-LSTM_D and CL-LSTM_D⁺. Experimental results of CL-LSTM_D and CL-LSTM_D⁺ on Exp1 and Exp2 are shown in Table 2~4 and Table 5, respectively. From those results, we can see that distillation loss contributes only a little improvement over the proposed models, the proposed methods can work with or without

^{*} indicates equal contributions. This work was done during Xin and Yu's internship at IBM.

[†]Corresponding author.

Method	50, slot	50, indent	50, semantic	500, slot	500, indent	500, semantic
CL-LSTM	52.06	58.46	17.13	71.77	79.50	40.78
LWF	49.75	56.89	14.48	67.22	78.82	36.94
Finetune	50.74	56.15	16.18	68.78	77.65	38.53

Table 1: Results of Exp1 on reverse order of the datasets with exemplar size of 50 and 500 samples.

Method	50	100	200	300	500
Joint Training	89.91	89.91	89.91	89.91	89.91
CL-LSTM	74.74	79.96	83.97	85.54	87.68
$CL-LSTM_D$	73.18	79.33	83.58	85.21	87.46
CL-LSTM ⁺	74.43	79.81	83.88	85.20	87.73
$CL-LSTM_D^+$	73.06	80.17	83.02	85.65	87.50

Table 2: Results of Exp1 on F1-score along with exemplar size from 50 to 500 samples, where D means model with distillation loss.

Method	50	100	200	300	500
Joint Training	95.05	95.05	95.05	95.05	95.05
CL-LSTM	79.10	82.49	86.48	87.91	91.15
$CL-LSTM_D$	77.80	81.86	86.17	87.65	91.21
CL-LSTM ⁺	78.84	81.79	87.59	88.58	91.23
CL-LSTM_D^+	78.19	82.78	85.79	88.24	91.41

Table 3: Results of Exp1 on *intent accuracy* along with exemplar size from 50 to 500 samples.

Method	50	100	200	300	500
Joint Training	76.92	76.92	76.92	76.92	76.92
CL-LSTM	50.46	57.84	63.81	65.36	70.99
$CL-LSTM_D$	47.36	55.96	62.76	66.02	70.63
CL-LSTM ⁺	50.36	56.96	63.67	64.91	71.00
CL-LSTM_D^+	48.41	56.10	61.60	66.34	69.75

Table 4: Results of Exp1 on semantic accuracy alongwith exemplar size from 50 to 500 samples.

Method	50	100	200	300	500
Joint Training	75.86	75.86	75.86	75.86	75.86
CL-LSTM	48.26	53.34	55.62	60.77	70.82
CL-LSTM ⁺	49.49	52.80	55.85	61.84	71.75
CL-LSTM_D^+	44.12	50.29	55.09	59.08	69.88

Table 5: Results of Exp2 on *F1-score* along with exemplar size from 50 to 500 samples.

it depending on the computational complexity in real scenarios.

References

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531.