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Biases in Machine Learning

e Machine learning systems can encode harmful societal biases.
e \Widespread use of machine learning systems amplify these biases.



Biases in Machine Learning (in NLP)

e Machine learning systems can encode harmful societal biases
e \Widespread use of machine learning systems amplify these biases.

> ?
man — woman ~ computer programmer — homemaker

Bolukbasi et al. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings, Advances in neural information processing systems, 2016



Biases in Machine Learning (in Vision)

e Machine learning systems can encode harmful societal biases
e \Widespread use of machine learning systems amplify these biases.

Study finds gender and skin-type bias in
commercial artificial-intelligence systems

Examination of facial-analysis software shows error rate of 0.8 percent
for light-skinned men, 34.7 percent for dark-skinned women.

http://gendershades.org/ &
news.mit.edu
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Biases in Machine Learning (in Vision)

e Machine learning systems can encode harmful societal biases

e \Widespread use of machine learning systems amplify these biases.
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Biases in Machine Learning (in ASR)

e Machine learning systems can encode harmful societal biases
e \Widespread use of machine learning systems amplify these biases.

There Is a Racial Divide in Speech-
Recognition Systems, Researchers Say

Technology from Amazon, Apple, Google, IBM and Microsoft
misidentified 35 percent of words from people who were black.
White people fared much better.



Biases in Machine Learning (in MT?)

e Machine learning systems can encode harmful societal biases
e \Widespread use of machine learning systems amplify these biases.

Goal: Investigate if modern machine
translation systems amplify racial
biases?



Proposal

e Use twitter posts which have demographic dialect information
associated.

e Translate these tweets with 3 “off-the-shelf” machine translation
models

e Do we notice disparity in translation quality?



e \We use data that was released in prior work by:
o Blodgett, et al. Demographic dialectal variation in social media: A case study of

African-American English. EMNLP, 2016

e This data was automatically annotated with racial dialectal labels by the
same authors.
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e We use data that was released in prior work by:

O

Blodgett, et al. Demographic dialectal variation in social media: A case study of
African-American English. EMNLP 2016

e This data was /I automatically annotated /I with racial dialectal labels

by the same authors.

O
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A weakly supervised mixed-membership model was used.
The authors generated a posterior distribution over 4 categories for each tweet:

African-American English (AAE)
Hispanic English (H)
White-aligned English (W)
Other



Examples AAE H w
Either yu gone get yo fkn life or get out my fkn life 0.82 0.004 0.142
When you got somebody good, you hold onto'em. 0.45 0.016 0.527
My sister asked me if the lions are in the playoffs.. 0.011 0.023 0.965
I'm too sad to stay up and im tired and i have church so night | 0.006 0.873 0.12




[ the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 2: MT User Track Page 177

Profanity and
Predictions

. Percentage of Profanity
The weakly supervised model 35

seems to think that profanity is
a feature of the AAE dialect.
This is not observed in any of

|
the other dialects. sl !
_ .
to not be influenced N II I I Il Il i

by the Weakly SUpeersed 0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
model’s (potentially) spurious
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Data Challenges

Percentage of Profanity

The dataset definitely has some 3

flaws (correlating profanity with '

a demographic dialect is one § .

example) £

However, the lack of expert gl |

annotated data to conduct ;o : II Il

analysis of this nature is also an o1 II I I l |
0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

issue.
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Experimental Setup

e For each category we subdivide the tweets into 5-bins based on the

posterior probability (0.0-0.2,0.2-0.4, ..0.8-1.0)
e From each bin in each category we sample ~30 tweets and have then

translated into French by professional translators.
e We then used 3 “off-the-shelf” translation systems to translate the ~600

tweets using an English->French model.
e We plot the quality of the translation against the posterior probability of

being a demographic category.



Results

e We plot BLEU/ (num. Reference-tokens) along the y-axis and the posterior
probability of the tweet belonging to a demographic dialect category.

A dot
represents a

single
translation.

BLEU/Token

Posterior Probability of
Demographic Dialect
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Results

e We plot BLEU/ num. Reference-tokens along the y-axis and the posterior
probability of the tweet belonging to a demographic dialect category.

Undesirable behavior, as tweets
strongly exhibit membership in a
demographic category,

translation quality drops
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Results

e We plot BLEU/ num. Reference-tokens along the y-axis and the posterior

probability of the tweet belonging to a demographic dialect category.
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Results

e We plot BLEU/ num. Reference-tokens along the y-axis and the posterior
probability of the tweet belonging to a demographic dialect category.
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Results

System A: H System A: AAE System A: W
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Results

System B: H System B: AAE System B: W
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Results

System C: H System C: AAE System C: W
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Conclusion

e Our experiments suggest that modern NMT systems exhibit undesirable
behavior when dealing with input associated with AAE dialects.

e Further work is needed to understand this phenomenon better. Ideally,
analysis should be conducted on expert annotated data.

e Our hope is that this work is a call to action to consider this a serious
problem and mitigate the amplification of biases via Al systems.

e One concrete recommendation is to include analysis like this into model
evaluation.





