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Abstract

Neural machine translation systems tend to fail
on less decent inputs despite its significant ef-
ficacy, which may significantly harm the cred-
ibility of these systems—fathoming how and
when neural-based systems fail in such cases
is critical for industrial maintenance. Instead
of collecting and analyzing bad cases using
limited handcrafted error features, here we in-
vestigate this issue by generating adversarial
examples via a new paradigm based on rein-
forcement learning. Our paradigm could ex-
pose pitfalls for a given performance metric,
e.g., BLEU, and could target any given neu-
ral machine translation architecture. We con-
duct experiments of adversarial attacks on two
mainstream neural machine translation archi-
tectures, RNN-search, and Transformer. The
results show that our method efficiently pro-
duces stable attacks with meaning-preserving
adversarial examples. We also present a qual-
itative and quantitative analysis for the pref-
erence pattern of the attack, demonstrating its
capability of pitfall exposure.

1 Introduction

Neural machine translation (NMT) based on the
encoder-decoder framework, such as RNN-Search
(Bahdanau et al., 2014; Luong et al., 2015,
RNNSearch) or Transformer (Vaswani et al., 2017,
Transformer), has achieved remarkable progress
and become a de-facto in various machine transla-
tion applications. However, there are still pitfalls
for a well-trained neural translation system, espe-
cially when applied to less decent real-world in-
puts compared to training data (Belinkov and Bisk,
2017). For example, typos may severely deterio-
rate system outputs (Table 1). Moreover, recent
studies show that a neural machine translation sys-
tem can also be broken by noisy synthetic inputs
(Belinkov and Bisk, 2017; Lee et al., 2018). Due
to the black-box nature of a neural system, it has

in | AEBHOSZE B FIBRIE FH
out | suicide bombing in jerusalem
in | BHBBASLE A FBFF

out | eastern jerusalem explores a case of eastern europe

Table 1: Fragility of neural machine translation. A
typo leaving out a Chinese character “¥F” leads to sig-
nificant errors (noted by italics) in English translation.
Both “#” and “}% }¥” mean “bombing” in English.

been a challenge to fathom when and how the sys-
tem tends to fail.

Intuitively, researchers seek to apprehend such
failures by the analysis of handcrafted error indi-
cating features (Zhao et al., 2018; Karpukhin et al.,
2019). This strategy is costly because it requires
expert knowledge for both linguistics and the tar-
get neural architecture. Such features are also less
applicable because some common errors in deep
learning systems are hard to formulate, or very
specific to certain architectures.

Instead of designing error features, recent re-
searchers adopt ideas from adversarial learn-
ing (Goodfellow et al., 2014) to generate adver-
sarial examples for mining pitfalls of NLP systems
(Cheng et al., 2018a; Ebrahimi et al., 2018; Zhao
et al., 2017). Adversarial examples are minor per-
turbed inputs that keep the semantic meaning, yet
yield degraded outputs. The generation of valid
adversarial examples provides tools for error anal-
ysis that is interpretable for ordinary users, which
can contribute to system maintenance. Though it
has achieved success concerning continuous input,
e.g., images, there are following major issues for
NLP tasks.

First, it is non-trivial to generate valid discrete
tokens for natural language, e.g., words or charac-
ters. Cheng et al. (2018a) follow Goodfellow et al.
(2014) to learn noised representation then sample
tokens accordingly. However, there is no guaran-
teed correspondence between arbitrary represen-
tation and valid tokens. Therefore, it may gen-



in Two man are playing on the street corner.
perturbed in | Two man are playing frisbee in the park.

out Zwei Minner spielen an einer Stralenecke.
perturbed out | Zwei Ménner spielen frisbee im park.

Table 2: Example of undesirable perturbation in adver-
sarial examples for machine translation in (Zhao et al.,
2017), though it yields very different output compare
to the origin, it does not indicate system malfunction.

erate tokens departing from learned representa-
tion, which undermines the generation. Ebrahimi
et al. (2018) turns to a search paradigm by a brute-
force search for direct perturbations on the token
level. To lead the search, a gradient-based surro-
gate loss must be designed upon every token mod-
ification by given target annotations. However,
this paradigm is inefficient due to the formidable
computation for gradients. Furthermore, surrogate
losses defined upon each token by targets requires
high-quality targets, and risks being invalidated by
any perturbation that changes tokenization.

Another issue is to keep the semantics of orig-
inal inputs. Different from the fact that minor
noises on images do not change the semantics,
sampling discrete tokens from arbitrary perturbed
representation (Cheng et al., 2018a) may gener-
ate tokens with different semantics and lead to
ill-perturbed samples (Table 2). Searching for
the perturbed input also requires a semantic con-
straint of the search space, for which handcrafted
constraints are employed (Ebrahimi et al., 2018).
Though constraints can also be introduced by mul-
titask modeling with additional annotations (Zhao
et al., 2017), this is still not sufficient for tasks re-
quiring strict semantic equivalence, such as ma-
chine translation.

In this paper, we adopt a novel paradigm that
generates more reasonable tokens and secures se-
mantic constraints as much as possible. We sum-
marize our contributions as the following:

e We introduce a reinforcement learning (Sut-
ton and Barto, 2018, RL) paradigm with a
discriminator as the terminal signal in its
environment to further constrain semantics.
This paradigm learns to apply discrete pertur-
bations on the token level, aiming for direct
translation metric degradation. Experiments
show that our approach not only achieves se-
mantically constrained adversarial examples
but also leads to effective attacks for machine
translation.

e Our paradigm can achieve the adversarial ex-
ample generation with outclassed efficiency
by only given source data. Since our method
is model-agnostic and free of handcrafted er-
ror feature targeting architectures, it is also
viable among different machine translation
models.

e We also present some analysis upon the state-
of-the-art Transformer based on its attack,
showing our method’s competence in system
pitfall exposure.

2 Preliminaries

2.1 Neural Machine Translation

The most popular architectures for neural machine
translation are RNN-search (Bahdanau et al.,
2014) and Transformer (Vaswani et al., 2017).
They share the paradigm to learn the condi-
tional probability P(Y|X) of a target translation
Y = [y1,92,..-,Ym| given a source input X =
[z1,z2, ..., x,]. A typical NMT architecture con-
sists of an encoder, a decoder and attention net-
works. The encoder encodes the source embed-
ding X¢pmp = [emby, emba, ...emb,,] into hidden
representation H = [hy, ho, ..., hy]. Then a de-
coder fy.. with attention network attentively ac-
cesses H for an auto-regressive generation of each
y; until the end of sequence symbol (EOS) is gen-
erated:

P(yi‘y<i> X) = SOftmaX(fdec(yifla St, Ct, Qdec))
(D

where ¢; is the attentive result for current decoder
state s; given H.

2.2 Actor-Critic for Reinforcement Learning

Reinforcement learning (Sutton and Barto, 2018,
RL) is a widely used machine learning technique
following the paradigm of explore and exploit,
which is apt for unsupervised policy learning in
many challenging tasks (e.g., games (Mnih et al.,
2015)). It is also used for direct optimization for
non-differentiable learning objectives (Wu et al.,
2018; Bahdanau et al., 2016) in NLP.

Actor-critic (Konda and Tsitsiklis, 2000) is one
of the most popular RL architectures where the
agent consists of a separate policy and value net-
works called actor and critic. They both take in en-
vironment state s; at each time step as input, while
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Figure 1: [a] Overview of our RL architecture. () Environment states are processed as inputs for agent; (2) agent
yield modification upon S RC' in environment; (3) determine survival and step reward of environment; 4) determine
degradation with victim NMT as episodic reward; () update agent with total rewards. During a training episode,
we loop D to 3 and accumulate step rewards until environment terminates. Dash line indicates execution at the
end of an episode. [b] Architecture of discriminator. [c] Architecture of agent.

actor determines an action a; among possible ac-
tion set A and critic yields value estimation V;(s;)
. In general, the agent is trained to maximize dis-
counted rewards R; = Zioio 'yirtﬂ- for each state,
where v € (0, 1] is the discount factor. Such goal
can be further derived as individual losses applied
to actor and critic. Thus the actor policy loss L™
on step t is:

L?(en) = log P(at|5t)At(5t7at)§ a €A (2)

where 6, denotes actor parameters, Ay(s,a;)
denotes general advantage function (Schulman
et al.,, 2015) on state s; for action a; given by
S i + 4%V (sex) — V (s¢), which can be
further derived as:

Ai(sg,at) = YArp1(Se41, A1) + 74
FYVir1(si41) — Vi(se)  (3)

Meanwhile, critic learns to estimate R; via mini-
mizing a temporal difference loss L” on each step
t:

1
Li(00) = 5 (re+ Rier = Vi(s1)? (4)

where 6,, denotes critic parameter.

Usually, the training is regularized by maximiz-
ing policy entropy H™ to avoid exploration failure
before exploiting optimum policy (Ziebart, 2010).
Thus the total loss becomes:

L) =) (aLj - LT = BH"(-|s))  (5)

where « and (8 are hyperparameters for value loss
and entropy coefficients.

2.3 adversarial examples in NLP

A general adversarial example generation can be
described as the learning process to find a pertur-
bation ¢ on input X that maximize system degra-
dation L4, within a certain constraint C'(9):

argmaxLgq, (X + 6) — AC(0) (6)
9

where A denotes the constraint coefficient, L, iS
determined by the goal of the attack. However,
currently effective adversarial generation for NLP
is to search by maximizing a surrogate gradient-
based loss:

argmax  Lago(T0, 21, .- @heezn)  (7)
1<i<n,z’ €vocab

where L4, is a differentiable function indicat-
ing the adversarial object. Due to its formidable
search space, this paradigm simply perturbs on a
small ratio of token positions and greedy search
by brute force among candidates. Note that adver-
sarial example generation is fundamentally differ-
ent from noised hidden representation in adversar-
ial training (Cheng et al., 2019; Sano et al., 2019),
which is not to be concerned in this work.

3 Approach

In this section, we will describe our reinforced
learning and generation of adversarial examples
(Figure 1) in detail. Overall, the victim model
is a part of the environment (denoted as Env),
which yields rewards indicating overall degrada-
tion based on modified inputs. A reinforced agent



learns to modify every source position from left to
right sequentially. Meanwhile, a discriminator in
FEnv provides every-step survival signals by deter-
mining whether SRC is ill-perturbed.

3.1 Environment

We encapsulate the victim translation model with
a discriminative reward process as an Env for a
reinforced agent to interact.

3.1.1 Environment State

The state of the Enwv is described as s; =
(SRC,t), where SRC' = [srcy, srcl, ..., srey]
are N sequences processed by victim model’s vo-
cabulary and tokenization. Each sequence src; =
[x1, X2, ..., x,] is concatenated with BOS, EOS,
which indicate the begin and end of the sequence,
then padded to same length. Time step ¢ € [1,n]
also indicates the token position to be perturbed
by the agent. Env will consecutively loop for all
token positions and update s; based on the agent’s
modification. Env also yields reward signals un-
til the end or intermediately terminated. That is,
all sequences in SRC' are determined by D as
ill-perturbed during the reward process. Once the
Env terminates, it finishes the current episode and
reset its state with a new batch of sequences as
SRC.

3.1.2 Reward Process with Discriminator

The reward process is only used during training. It
consists of a survival reward r¢ on every step and
a final degradation r4 concerning an overall metric
if the agent survives till the end. Overall, we have:

—1, terminated
Te =1 &y ya-Ts, survive & t € [1,n)
+oonla-rs+b-rq), survive & t=n

®)

where a,b are hyper parameters that keeps the
overall rg and r4 within similar magnitude.
Instead of direct optimization of the constrained
adversarial loss in Eq.6, we model discriminator
D’s output as survival rewards similar to that in
gaming (Mnih et al., 2015). That is, the agent
must survive for its goal by also fooling D, which
attempts to terminate ill-perturbed modifications.
We define an ill-perturbed source by determining
whether it still matches the original target ¢gt.

Discriminator As it is shown in Figure 1(b),
discriminator D consists of bi-directional GRU
encoders for both source and target sequence.
Their corresponding representation is averaged
and concatenated before passed to a feedforward
layer with dropout. Finally, the output distribution
is calculated by a softmax layer. Once D deter-
mines the pair as positive, its corresponding possi-
bility is regarded as the reward, otherwise 0:

positive
otherwise

©))

{P(positive\ (srd,tgt); 04),
Ty =
0,

As long as the environment survives, it yields
averaged reward among samples from SRC
(Eq.8) to mitigate rewards’ fluctuation that desta-
bilize training.

Discriminator Training Similar to GAN train-
ing, the environment’s D must update as the agent
updates. During its training, the agent’s parameter
is freezed to provide training samples. For every
D’s training epoch, we randomly choose half of
the batch and perturb its source using the current
agent as negative samples. During D’s updates,
we randomly generate a new batch of pairs from
parallel data likewise to test its accuracy. D is up-
dated at most stepp epochs, or until its test accu-
racy reaches acc_bound.

Env only' yields -1 as overall terminal rewards
when all sequences in S RC' are intermediately ter-
minated. For samples classified as negative during
survival, their follow-up rewards and actions are
masked as 0. If the agent survives until the end,
Enwv yields additional averaged rq as final rewards
for an episode. We follow Michel et al. (2019) to
adopt relative degradation:

_— score(y, refs) — score(y’,refs) (10)
4 score(y, refs)

where y and ¢ denote original and perturbed out-
put, re fs are references, and score is a translation
metric. If score(y,refs) is zero, we return zero
as r4. To calculate score we retokenize perturbed
SRC by victim models vocabulary and tokenizer
before translation.

'Tt is commonly accepted that frequent negative rewards
result in agents’ tendency to regard zero-reward as optimum
and fail exploration, which further leads to training failure.



3.2 Agent

As itis shown in Figure 1 (c), the agent’s actor and
critic share the same input layers and encoder, but
later processed by individual feedforward layers
and output layers. Actor takes in S RC' and current
token with its surrounding (x¢_1, ¢, Z¢+1), then
yields a binary distribution to determine whether
to attack a token on step ¢, while critic emits a
value V (s;) for every state. Once the actor de-
cides to perturb a specific token, this token will be
replaced by another token in its candidate set.

Candidate Set We collect at most K candidates
for each token in the victim’s vocabulary within a
distance of €. € is the averaged Euclidean distance
of K-nearest embedding for all tokens in victim
vocabulary. We note that there shall always be
candidates for a token in test scenarios that are
beyond victim’s vocabulary, for those without a
nearby candidate, we assign UNK as its candidate.
Once the agent chooses to replace a token with
UNK, we follow Michel et al. (2019) to present
a valid token that is also UNK to the victim’s vo-
cabulary.

Agent Training The agent is trained by algo-
rithm in appendix A. Since the agent is required
to explore with stochastic policy during training,
it will first sample based on its actor’s output dis-
tribution on whether to perturb the current posi-
tion, then randomly choose among its candidates.
The agent and discriminator take turns to update.
We assume the training is converged when test ac-
curacy for D does not reach over a certain value
within certain continuous learning rounds of agent
and discriminator.

Agent Inference To generate adversarial exam-
ples, the agent will take in source sequences and
perturb on each position based on the actor’s out-
put from left to right, then choose the nearest can-
didate. As the agent’s critic learns to estimate
expected future rewards for a step, only when it
yields positive value will agent perturb, otherwise
it indicates an undesirable perturbation; thus, the
agent is muted.

4 Experiments

4.1 Data Sets

We test our adversarial example generations on
Zh—En, En—Fr, and En—De translation tasks,

which provide relatively strong baselines for vic-
tim models and mass test samples.

We train our agent using only parallel data that
is used for victims’ training. we train on LDC
Zh—En?(1.3M pairs), WMT14 En—De? (4.5M
pairs) and WMT15 En—Fr*(2.2M pairs) for vic-
tim models respectively. For subword level trans-
lation, we apply byte pair encoding (Sennrich
et al., 2015, BPE) for both source and target lan-
guages with the vocabulary size of 37k. We
also use join-BPE for En-De and En-Fr experi-
ments with 34k and 33k vocabulary size, respec-
tively. For word-level translation, we use NLPIR-
ICTCLAS and Moses tokenizer for Chinese and
English tokenization, respectively. We adopt 30k
as vocabulary size for both source and target lan-
guage. We adopt NIST test sets > for Zh—En and
WMT test sets for En—De and En—Fr, then gen-
erate adversarial examples for these sources for
analysis.

4.2 Victim Models

We choose the state-of-the-art RNN-search and
Transformer as victim translation models. For
RNN-search, we train subword level models and
strictly follow the architecture in Bahdanau et al.
(2014).  As for Transformer, we train both
word-level and subword-level model for Zh—En
and only subword-level models for En—De and
En—Fr with the architecture and the base parame-
ter settings by Vaswani et al. (2017). For the above
models, we apply the same batch scheme and
Adam optimizer following Vaswani et al. (2017).
We choose MTO03, newsdiscuss2015 and new-
stest2013 for Zh—En, En—Fr, En—De as valida-
tion set respectively.

4.3 Metrics

We first report attack results both in terms of char-
level BLEU (chrBLEU) of perturbed source by the
origin to indicate modification rate, and relative
decrease in target BLEU (RD):

BLEU(y,refs) — BLEU(y/,refs)
(1 — chrBLEU(2/, x)) x BLEU(y, refs)
1D

We adopt sacreBLEU (Post, 2018) to test case-
insensitive BLEU on detokenized targets.

RD =

’1dc2002E18, 1dc2003E14, 1dc2004T08, 1dc2005T06
3https://nlp.stanford.edu/projects/nmt/

*Europarl-v7, news-commentary-v10
MTO02,03,04,05,06



Zh-En MTO02-06

BLEU chrBLEU | RDt  HE?t
Transformer-word | 41.16 - - -
RSNI (0.2)* 29.68 0.892 2.580* 1.39*
RSNI (0.3)* 19.94 0.781 2.350* 1.10*
GS (0.2) 33.46 0.749 0.746  3.23
GS (0.3) 29.86 0.676 0.847 249
Ours 33.72 0.804 0.952 3.73
Transformer-BPE | 44.06 - - -
RSNI (0.2)* 34.44 0.892 2.019* 1.45*
RSNI (0.4)* 25.78 0.781 1.891* 1.08*
GS (0.2) 35.52 0.823 1.094 3.88
GS (0.4) 28.18 0.675 1.004  2.90
Ours 35.48 0.807 1.009  3.79
RNN-search-BPE | 40.90 - - -
RSNI (0.2)* 32.54 0.892 1.891* 1.44*
RSNI (0.4)* 25.54 0.781 1.712*  1.36*
GS (0.2) 32.94 0.823 1.102  3.79
GS (0.4) 27.02 0.678 1.053  2.88
Ours 31.58 0.785 1.059 3.81

Table 3: Experiment results for Zh—En MT attack. We
list BLEU for perturbed test sets generated by each ad-
versarial example generation method, which is expect
to deteriorate. An ideal adversarial example should
achieve high RD with respect to high HE.

As Michel et al. (2019) suggest, there is a trade-
off between achieving high RD and maintaining
semantic. One can achieve rather high RD by test-
ing with mismatched references, making degra-
dation less meaningful. Therefore, we also test
source semantic similarity with human evaluation
(HE) ranging from 0O to 5 used by Michel et al.
(2019) by randomly sampling 10% of total se-
quences mixed with baselines for a double-blind
test.

4.4 Results

We implement state-of-the-art adversarial exam-
ple generation by gradient search (Michel et al.,
2019) (GS) as a baseline, which can be cur-
rently applied to various translation models. We
also implemented random synthetic noise injec-
tion (Karpukhin et al., 2019) (RSNI) as an uncon-
strained contrast. Both baselines are required to
provide a ratio for the amount of tokens to per-
turb during an attack, where we present the best re-
sults. Unlike our paradigm can generate on mono-
lingual data, GS also requires target annotations,
where we use one of the references to provide
a strong baseline. Note that RSNI can signifi-
cantly break semantics with distinctly lower HE
to achieve rather high RD, which we do not con-
sider as legit adversarial example generation and
noted with “*” for exclusion.

As it is shown in Table 3 and 4, our model

En-De newstest13-16

BLEU chrBLEU | RDt HE?T
RNN-search-BPE | 25.35 - - -
RSNI (0.2)* 16.70 0.949 6.691*  2.32*
RSNI (0.4)* 10.05 0.897 5.860* 1.58*
GS (0.2) 19.42 0.881 1.966 3.81
GS (0.4) 9.27 0.680 1.982 3.01
Ours 21.27 0.921 2.037 3.95
Transformer-BPE | 29.05 - - -
RSNI (0.2)* 18.775 0.949 6.935*  2.39*
RSNI (0.4)* 11.125 0.897 5.991* 1.58*
GS (0.2) 18.29 0.861 2.665 3.69
GS (0.4) 10.03 0.751 2.629 3.33
Ours 19.29 0.875 2.688 3.79

En-Fr newstest13-14 + newsdiscuss15
RNN-search-BPE | 32.6 - - -

RSNI (0.2)* 21.93 0.947 6.175%  2.23*
RSNI (0.4)* 14.3 0.894 5.271%  1.56*
GS (0.2) 22.7 0.833 1.818 3.80
GS (0.4) 15.2 0.708 1.828 3.25
Ours 22.3 0.843 2.009 3.87
Transformer-BPE | 34.7 - - -

RSNI (0.2)* 24.0 0.947 5.774%  2.34*
RSNI (0.4)* 15.8 0.894 5.114*  1.67*
GS (0.2) 23.01 0.830 1.982 3.74
GS (0.4) 19.6 0.788 2.053 3.68
Ours 21.33 0.798 1.907 3.78

Table 4: Experiment results for En—De and En—Fr
MT attack.

stably generate adversarial examples without sig-
nificant change in semantics by the same train-
ing setting among different models and language
pairs, achieving stably high HE (>3.7) with-
out any handcrafted semantic constraints, while
search methods (GS) must tune for proper ratio
of modification, which can hardly strike a bal-
ance between semantic constraints and degrada-
tion. Unlike search paradigm relying on refer-
ence and victim gradients, our paradigm is model-
agnostic yet still achieving comparable RD with
relatively high HE.

4.5 Case Study

As it is shown in Table 5, our method is less likely
to perturb some easily-modified semantics (e.g.
numbers are edited to other “forms”, but not dif-
ferent numbers), while search tends to generate
semantically different tokens to achieve degrada-
tion. Thus our agent can lead to more insightful
and plausible analyses for neural machine transla-
tion than search by gradient.

5 Analysis
5.1 Efficiency

As it is shown in Figure 2, given the same amount
of memory cost, our method is significantly more



originin | 2EH 4000 7 & REEZ16 L ERATHFZZEFREPEFLELL .
origin out | 40 million voters throughout the country will elect the seventh president of the fifth republic of france among the 16 candidates
40 million voters in the nation will elect the 7th president for the french fifth republic from 16 candidates.
references there are 40 million voters and they have to pick the fifth republic france’s seventh president amongst the sixteen candidates.
forty million voters across the country are expected to choose the 7th president of the 5th republic of france from among 16 candidates.
40 million voters around france are to elect the 7th president of the 5 republic of france from 16 candidates .
GS(04)in | 2E B 4000 7 FRIGEE 6 LERATHRFZZBHEEBER HEEIFRH K-
GS (0.4) out | of the 6 candidates, 40 million people will elect the seventh foreign minister of the five countries.
ours in ASEH40007 B REEIALBERATREZZBHFSEAFEF7ELL
ours out among the 16 candidates , 40 million voters will elect five presidents of France and seven presidents of the republic of France.
originin | TEFAMKELITS AHIE .
origin out | the persons involved in the case are currently detained by the yemeni authorities.
the perpetrator is currently in the custody of the yemeni authorities.
references yemeni authority apprehended the suspéct. B
the suspect is now in custody of yemeni authorities .
the ones involed in this case were also detained by the authority.
GS(04)in | TEABRMALITAAEE .
GS (0.4) out | the person involved in the case is now detained by the authorities!
ours in FE% BRI S ARG .
ours out the victim is currently detained by the yemeni authorities.

Table 5: (a) an example of perturbed number and quantifier severely damaging outputs in Zh—En translation,
where we highlight the changes. “2.” is the character for 5 and “4” for 7, “4%” and “4%” are both commonly
used quantifiers for people. However, search-based attack achieves degradation by some significant changes of
semantics, where number “16” is changed to “6”, and “4) X 3F &~ means “foreign minister”. (b) an example of
changed suffix which breaks the result. “7% > and “# are common suffixes (K) sharing same meaning used for
people. Our model spots that victim model’s fragility upon such perturb, while search does not.

efficient compared to the search paradigm. Gradi-
ent computation concerning every modified source
sequence can cost considerably in time or space
for a state-of-the-art system, which could be even
worse for systems with recurrent units. When it
comes to mass production of adversarial examples
for a victim translation system, our method can
also generate by given only monolingual inputs.
In contrast, search methods must be provided the
same amount of well-informed targets.

W ours GS (0.2) GS (0.4)
o B 45000 31508 35671
| e
0
=0 [ 207 295

Transformer-bpe RNN-search-bpe

Figure 2: Time consumption of different methods:
we limit memory usage to 2.5G on single Nvidia
1080, and generate adversarial examples for the same
800 inputs in Zh—En MT with different methods,
our method significantly outclasses the state-of-the-art
search paradigm (GS).

5.2 Attack Patterns

NMT systems may have different robustness over
different parts of the inputs, thus some researchers
implement input preprocessing targeting certain

empirically weak parts, e.g., named entities(Li
et al., 2018). Since the agent’s policy is to attack
without handcrafted error features, we can further
investigate vulnerability by its attack preferences
of different parts of speech. We choose Chinese,
for example, and adopt LTP POS tagger® to label
NIST test sets, then check the modification rate for
each POS. To ensure the reliability of our analysis,
we run three rounds of experiments on both base-
lines and our agent with similar modification rate
targeting state-of-the-art Transformer with BPE,
and collect overall results. We also present ran-
dom synthetic noise injection (Karpukhin et al.,
2019) (RSNI), which is not intended for any pref-
erence as an additional baseline.

As it is shown in Figure 3, our reinforced
paradigm shows distinct preference upon certain
POS tags, indicating pitfalls of a victim transla-
tion system. At the same time, RSNI distributed
almost evenly upon different POS tags. Though
the search paradigm (GS) does expose some types
of pitfall, our method can further expose those
omitted by the search. Note that unlike existing
work relying on feature engineering to indicate er-
rors, we have no such features implemented for
an agent. However, our agent can still spot er-
ror patterns by favoring some of the POS, such as

®https://github.com/HIT-SCIR/Itp



0.9000

RSNI (0.4)
0.6750 GS(0:4)
0.4500 M Ours
0.2250
0.0000

< m O o - - X = =z %

5 4 9 E N o O >
z z z =z =z >

s 2

Figure 3: Attack preferences of different paradigms targeting Zh—En Transformer-BPE model. All share a sim-
ilar modification rate. Our agent shows a significant preference for some POS (e.g., Ni, Nh, Nz, I), which are
commonly regarded as hard-to-translate phrases among industrial implementations, while some (e.g., K) are less

noticed. Preference among different choices.

Attack by [ BLEU(A)
Zh-En MT02-06
- 40.90
RNN-search-BPE | agent-RNN | 31.58(-9.32)
agent-TF | 32.14(-8.76)
- 44.06
Transformer-BPE | agent-TF | 35.48(-8.58)
agent-RNN | 33.14(-10.92)
En-De Newstest13-16
- 25.35
RNN-search-BPE | agent-RNN | 21.27(-4.08)
agent-TF | 17.18(-8.18)
- 29.05
Transformer-BPE | agent-TF | 19.29(-9.76)
agent-RNN | 24.2(-4.85)
En-Fr Newstest13-14+newsdiscuss15
- 32.60
RNN-search-BPE | agent-RNN | 22.3(-10.30)
agent-TF | 19.83(-14.87)
- 34.70
Transformer-BPE | agent-TF | 21.33(-13.37)
agent-RNN | 22.35(-10.25)

Table 6: Attacks targeting different architecture from
the trained one. We note agent with the architecture
that is trained with(e.g., agent-RNN stands for agent
trained by targeting RNN-search).

Ni (organization name), Nh (person name), NI (lo-
cation name), M (numbers), which are commonly
accepted as hard-to-translate parts. Moreover, the
agent also tends to favor K (suffix) more, which is
less noticed.

5.3 Attack Generalization

We additionally test agents by attacking different
model architecture from the one that it’s trained.
As it is shown in Table 6, we perturb the inputs
by agents trained to attack a different architecture,
then test for degradation. The results show that our
agent trained by targeting Transformer architec-
ture can still achieve degradation on RNN-search,
and vice-versa.

Clean test Noisy test IWSLT11-17
Transformer-BPE | 44.06 35.48 11.27
Tuned 43.60(-0.46) | 40.31(+4.83) | 11.73(+0.46)

Table 7: Tuning Zh—En Transformer-BPE model with
adversarial examples. We generate adversarial exam-
ples for every training sources for tuning, achieving
overall improvements for noisy tests.

5.4 Tuning with Adversarial Examples

Since the agent generates meaning-preserving ad-
versarial examples efficiently, we can directly tune
the original model with those samples. We choose
Zh—En Transformer-BPE, for example, and gen-
erate the same amount of adversarial examples
given original training sources(1.3M pairs), then
paired with initial targets. We mix the augmented
pairs with original pairs for a direct tuning. We
test the tuned model on original test data and noisy
test data generated by the attacking agent. We ad-
ditionally test on IWSLT11-17 Zh—En test data,
which is not used for training or tuning, to verified
robustness improvement. As Table 7 shows, our
agent can achieve substantial improvement(+4.83)
on noisy tests with only minor loss on clean tests(-
0.46). The improvement on the IWSLT test also
indicates the adversarial tuning contributes to not
only defending the agent’s attack, but also overall
robustness.

5.5 Reinforced Examples for Machine
translation

We additionally switched the episodic rewards in
the environment, then ignored all modifications
that induce UNK tokens to train an agent, hop-
ing to generate minor perturbed samples that can
improve the translation metric. Though we failed
to achieve overall improvements, we do succeed
for quite a portion of samples, as shown in Table
8. Similar to adversarial examples, we call them
reinforced examples. Such improvement is dif-
ferent from adversarial training that tunes model



in BERRREMIF R &%
perturbed in | &% E R R Mk &k
out Chinese, Tunisian minsters hold talks.
perturbed out | gian gichen holds talks with Tunisian foreign minister.
in FTERRECEREARADTIFA
perturbedin | TERREEMAEMRAFTIFE
out overnight parking of cmb and city bus
perturbed out | overnight parking of cmb and city bus in southern district

Table 8: Example of minor perturbed samples that im-
proves machine translation for Zh—En Transformer-
BPE model. The “- ” in first sample is modified to
“.”_ then model yields the omitted “#% & 3 (gian gi
chen)”. The “4% 7 in second sample is modified to
“4% %>, where they both mean “parking”, then comes
the omitted “in southern district” for “7 &g X .

for defense or strict text correction before the test
phase. Reinforced examples are still noisy and can
be directly applied for a test without any model
updates to achieve improvements, which to our
best knowledge is less investigated by researchers.
Since we discovered that not all perturbed inputs
are harmful, such an issue can be a good hint and
alternative for better adversarial defense in NLP
and should be further considered.

6 Related Work

Cheng et al. (2018a) and Cheng et al. (2018b) ap-
plied continuous perturbation learning on token’s
embedding and then manage a lexical representa-
tion out of a perturbed embedding. Zhao et al.
(2017) learned such perturbation on the encoded
representation of a sequence, and then decode it
back as an adversarial example. These methods
are applicable for simple NLP classification tasks,
while failing machine translation which requires
higher semantic constraints. Zhao et al. (2017)
further attempted to constrain semantic in such
paradigm by introducing multi-task modeling with
accessory annotation, which further limits applica-
bility.

On the other hand, Ebrahimi et al. (2018),
Chaturvedi et al. (2019) and Cheng et al. (2019)
regarded it as a search problem by maximizing
surrogate gradient losses. Due to the formidable
gradient computation, such methods are less vi-
able to more complex neural architectures. Cheng
et al. (2019) introduced a learned language model
to constrain generation. However, a learned lan-
guage model is not apt for common typos or UNK.
Another pitfall of this paradigm is that surrogate
losses defined by a fixed tokenization for non-
character level systems, risks being invalidated
once the attack changes tokenization. Therefore,

Ebrahimi et al. (2018) simply focused on char-
level systems, while Michel et al. (2019) specially
noted to exclude scenarios where attack changes
tokenization in their paradigm.

Other works turn to more sophisticated gen-
eration paradigms, e.g., Vidnerovd and Neruda
(2016) adopts a genetic algorithm for an evolu-
tionary generation targeting simple machine learn-
ing models. Zang et al. (2019) consider adversar-
ial generation as a word substitution-based com-
binatorial optimization problem tackled by parti-
cle swarm algorithm. Our paradigm shares some
common ideology with Miao et al. (2019) and
Xiao et al. (2018), which iteratively edit inputs
constrained by generative adversarial learning.

7 Conclusion

We propose a new paradigm to generate adversar-
ial examples for neural machine translation, which
is capable of exposing translation pitfalls with-
out handcrafted error features. Experiments show
that our method achieves stable degradation with
meaning preserving adversarial examples over dif-
ferent victim models.

It is noticeable that our method can generate
adversarial examples efficiently from monolingual
data. As a result, the mass production of ad-
versarial examples for the victim model’s analy-
sis and further improvement of robustness become
convenient. Furthermore, we notice some excep-
tional cases which we call as “reinforced sam-
ples”, which we leave as the future work.
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A Training Details for Agent

We adopt commonly accepted translation metric
BLEU as score in Eq.9. We use 50 sequence pairs
per batch both in environment initialization and
training of discriminator and agent. It is essential
to train on batches of sequences to stabilize rein-
forced training. Furthermore, note that D can be
too powerful during the early training stage com-
pared to the agent’s actor that it can quickly ter-
minate an exploration. Therefore, we must train
on batches and determine an overall terminal sig-
nal as aforementioned to ensure early exploration.
The stepp and step, are set as 80 7 and 120.
acc_bound for discriminator training is set to 0.85.
The a and b in Eq.8 are set to 0.5 and 10. The di-
mension of feedforward layers in the agent’s actor-
critic and discriminator are all 256. We initialize
the embedding of both agent and discriminator by
the victim’s embedding.

For reinforcement learning, we adopt asyn-
chronous learning with an additional global agent
with an additional set of parameter 6*?, we set dis-
count factor 7y to 0.99, « and 5 in Eq.5 to 0.5 and
0.05 respectively. As for the stop criterion, we set
patience_round to 15 with convergence bound-
ary for accp to 0.52. We adopt Adafactor(Shazeer
and Stern, 2018) for training, which is a memory-
efficient Adam. The learning rate for agent’s opti-
mizer is initiated as 0.001 and scheduled by rsqrt
with 100 steps of warmup. The K for the candi-
date set is 12.

Our agent takes around 30 hours to converge
on a single Nvidia 1080ti. Note that higher
acc_bound and lower convergence boundary for D
indicates higher semantic constraints, which will
increase training time.

B Search-based Attack

Search-based adversarial generation is currently
widely applied in various robustness machine
translation system. We generally follow the strat-
egy of Ebrahimi et al. (2018); Michel et al. (2019)

"Three times the average convergence episodes to train a
discriminator with initial agent by the given batch size.

Algorithm 1: Reinforced training for
agent
Result: A learned global agent 7ya
1 Assume global agent as 7y with parameter 6
2 Assume agent as my with parameter set 6
3 initialize: Env with D, 6%, 6 ;
4 while not Stop Criterion do

5 for stepp do
6 train D with current agent 7y ;
7 if accp > acc_bound break;
8 end
9 test current ID’s accuracy accp for stop
criterion;
10 for step 4 do
11 initialize Env state sg;
12 synchronize gy with mge ;
13 t = tstart 5
14 while
s¢ survive and t — tsiart < tmaz
do
15 get out?®" Vi = mp(sy) ;
16 compute entropy H (outi®") ;
17 sample a; based on out?®" ;
18 perform a; and receive r; and
St+1 5
19 t—t+1;
20 end
{O for terminal sy
21 R=
V(st) for non-terminal s,
2 foric {t —1,...,tstare} do
23 R+ ~vR+r;;
24 accumulate L} (0) ;
25 accumulate LT () ;
26 end
27 compute overall loss L(6) ;
28 perform asynchronous updates on
6*? with gradient 8(%(96) ;
29 end
3 end

which is applicable for both RNN-search and
Transformer. More specifically, the L,q4, in Eq.7
is derived as:

argmax  |emb’ — emb;|Vemp, Lady, (12)

1<i<n,emb)€vocab

lyl
Loan(X',Y) = ZlOg(l — Py X', y1.--91-1))
t=1



where each P(y;|X) is calculated by Eq.1 given a
corresponding target. For every source sequence,
a small ratio of positions is sampled for search.
Then we greedy search® by the corresponding loss
upon those positions with given candidates. For
better comparison, we adopt the candidate set used
in our model instead of naive KNN candidates.
Both baseline and our model share the same UNK
generation for presentation. We use homophone
replacement for Chinese, and strategy by Michel
et al. (2019) for English.

8Ebrahimi et al. (2018) suggest that greedy search is a
good enough approximation.



