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Abstract

Opinion role labeling (ORL) is a fine-grained
opinion analysis task and aims to answer
“who expressed what kind of sentiment to-
wards what?”. Due to the scarcity of labeled
data, ORL remains challenging for data-driven
methods. In this work, we try to enhance neu-
ral ORL models with syntactic knowledge by
comparing and integrating different represen-
tations. We also propose dependency graph
convolutional networks (DEPGCN) to encode
parser information at different processing lev-
els. In order to compensate for parser inac-
curacy and reduce error propagation, we in-
troduce multi-task learning (MTL) to train the
parser and the ORL model simultaneously. We
verify our methods on the benchmark MPQA
corpus. The experimental results show that
syntactic information is highly valuable for
ORL, and our final MTL model effectively
boosts the F1 score by 9.29 over the syntax-
agnostic baseline. In addition, we find that the
contributions from syntactic knowledge do not
fully overlap with contextualized word repre-
sentations (BERT). Our best model achieves
4.34 higher F1 score than the current state-of-
the-art.

1 Introduction

Opinion and sentiment analysis has a wide range of
real-world applications like social media monitor-
ing (Bollen et al., 2011), stock market prediction
(Nguyen et al., 2015), box office prediction (Yu
et al., 2010), and general e-commerce applications
(Kim et al., 2013; Hu et al., 2017; Cui et al., 2017).
In particular, fine-grained opinion analysis aims to
identify users’ opinions in a text, including opinion
expressions, holders of the opinions, targets of the
opinions, target-dependent attitude, and intensity
of opinions (Marasović and Frank, 2018), which is
very important for understanding political stance,
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$ Cardoso says challenge facing Chavez is . . .

Holder Expression Target

Figure 1: An Example of ORL (bottom) and syntactic
dependency tree (top) for “Cardoso says challenge fac-
ing Chavezis is reestablishing normalcy.”

customers’ reviews, marketing trends, and other
subjective information (Ravi and Ravi, 2015). As
a typical fine-grained opinion mining task, opinion
role labeling (ORL) aims to identify different roles
relevant to each opinion, i.e., who expressed what
kind of sentiment towards what (Liu, 2012).

Due to the lack of large-scale labeled data, ORL
remains a challenging task to tackle. As a reference
point, semantic role labeling (SRL) is very similar
to ORL in the problem definition, but has 10 times
more labeled data and thus achieves much higher
performance than ORL (80∼90 vs. 60∼70 in F1
score). Motivated by the correlations between the
two tasks, SRL has been utilized to help the ORL
task by many previous studies (Ruppenhofer et al.,
2008; Marasović and Frank, 2018; Zhang et al.,
2019b). However, when opinion expressions and ar-
guments compose complicated syntactic structures,
it is difficult to correctly recognize the opinion ar-
guments even with shallow semantic representation
like SRL (Marasović and Frank, 2018).

To compensate for the limited scale of labeled
data for data-driven approaches, linguistic knowl-
edge like syntax provides structural information
representing human understanding of the text. Nat-
urally, dependency relations between words ease
the discovering of opinion roles. Taking the ex-
ample in Figure 1, the Target span is often incom-
pletely recognized without syntactic dependency



relations, missing either “facing Chavez” or “chal-
lenge”. For the similar SRL task, many previous
works have proposed to incorporate syntax into the
neural models (Marcheggiani and Titov, 2017; He
et al., 2018; Xia et al., 2019a). In contrast, few stud-
ies in the recent years explore this line of research
for ORL.

There are two barriers to apply syntactic depen-
dency parsing to NLP tasks, i.e., 1) inaccuracy of
the parsing results, and 2) error propagation of the
processing pipeline. To overcome the first barrier,
instead of employing the final discrete outputs (i.e.,
single 1-best dependency trees), we make use of
the probability matrix of all dependency arcs (also
can be viewed as an edge-weighted directed graph)
before searching for the 1-best tree. Such prob-
abilistic representation of syntax provides more
information while alleviating parsing errors. For
the second barrier, considering that the pipeline
methods are notorious for the error propagation
problem, we introduce multi-task learning (MTL)
frameworks, which have been widely used in many
NLP models when predictions at various process-
ing levels are needed (Collobert and Weston, 2008;
Ruder, 2017).

Apart from the syntactic information, contextual-
ized word representations like BERT (Devlin et al.,
2019) are widely used to compensate for the spar-
sity of task-specific training data. They compress
distributional semantics of words from large cor-
pora, making the local context fluent and natural.
However, the long-distance dependencies between
words are often ignored, which is ideally able to be
captured by syntactic analysis.

In summary, based on previous studies in using
syntax to improve various tasks, this work investi-
gates whether syntax can enhance the neural ORL
model. Particularly, we try to answer the following
three questions.

• How to effectively integrate various syntactic
information into the neural ORL model?

• How to alleviate the propagation of errors
brought by syntactic parsing?

• Is syntactic knowledge already covered by
the contextualized word representations like
BERT?

Based on our experiments, we observe that 1)
compared with single 1-best parse trees, encod-
ing the edge-weighted graphs achieves better re-

sults, as the model is less sensitive to parsing er-
rors while keeping richer structural information; 2)
integrating various syntactic information, both ex-
plicit and implicit, boosts performance, and MTL
framework can effectively alleviate the error prop-
agation problem; and 3) contributions from syn-
tactic information, especially from long-distance
dependency relations, do not fully overlap with
those from the contextualized word representations
like BERT. Our overall model delivers a new state-
of-the-art result on the benchmark MPQA corpus,
with 4.34 absolute improvement over the previous
best result.

2 Related work

An opinion consists of several components, e.g.,
expressions, holders, and targets. Some previ-
ous works focus on recognizing some components,
whereas others try to recognize all components at
the same time. Yang and Cardie (2014) and Breck
et al. (2007) work entirely on labeling of the opin-
ion expressions. Kim and Hovy (2006) and Johans-
son and Moschitti (2013) apply pipeline models
to firstly predicting opinion expressions and then
labeling holders and targets for each expression.
Joint models simultaneously identify all opinion
components, predicting which role is related to
which opinion (Choi et al., 2006; Yang and Cardie,
2013; Katiyar and Cardie, 2016). In this work, we
follow the opinion role labeling (ORL) task setting
of Marasović and Frank (2018) and Zhang et al.
(2019b), and try to predict holders and targets for
the given opinion expressions.

Previous works make use of SRL resources to
address the issue of data scarcity for ORL, con-
sidering SRL is highly related to ORL and has a
considerable amount of training data. Inspired by
the similarity between ORL and SRL in task def-
inition, Kim and Hovy (2006) and Ruppenhofer
et al. (2008) address ORL with a well-trained SRL
model by treating opinion expressions as seman-
tic predicates, and opinion roles as semantic roles.
Marasović and Frank (2018) take SRL as an auxil-
iary task, and employ different MTL frameworks to
learn the common grounds between ORL and SRL
and distinguish task-specific knowledge. Zhang
et al. (2019b) extract neural features from a well-
trained SRL model as SRL-aware word represen-
tations, and then feed them into the input layer
of ORL, aiming to alleviate the error propagation
problem.



Figure 2: The overall architecture of our models.

Many previous works have shown that syntactic
information is of great value for SRL and other
NLP tasks (He et al., 2018; Zhang et al., 2019c;
Strubell et al., 2018; Xia et al., 2019a; Miwa and
Bansal, 2016; Zhang et al., 2019a). Xia et al.
(2019b) use the relative position between predi-
cate words and other words in a dependency tree to
represent syntactic information, while Roth and La-
pata (2016) employ LSTM to obtain the embedding
of a dependency path. Tai et al. (2015) and Kipf and
Welling (2016) propose TreeLSTM and graph con-
volution network (GCN) to encode the tree/graph-
structural data respectively. Both TreeLSTM and
GCN are commonly used techniques to encode
parse trees (Miwa and Bansal, 2016; Marcheggiani
and Titov, 2017; Bastings et al., 2017). Zhang et al.
(2019a) and Xia et al. (2019a) extract the hidden
states from the LSTM encoder of the parser model
as syntax-aware word representations, and feed
them to downstream tasks as extra inputs.

In contrast, few works have proved that syntac-
tic knowledge is useful in the neural ORL models.
Yang and Cardie (2013) integrate the shortest path
features from dependency trees into a traditional
CRF-based ORL model. To our best knowledge,
this work is the first to investigate how to incorpo-
rate syntax into neural ORL models.

3 Basic Models

The ORL model aims to extract opinion-holder-
target structures from text by identifying the seg-
ments of these opinion arguments. The task can
be modeled as a sequence labeling problem. We
adopt the {BMESO} encoding schema to assign
a tag for each word (Zhang et al., 2019b). Follow-
ing Marasović and Frank (2018) and Zhang et al.
(2019b), we focus on recognizing the holders and
the targets for the given opinion expression and
exploit a deep BiLSTM-CRF-based model as our
baseline.

The Figure 2-(a) shows the architecture of our
ORL baseline model, which is composed of three
key components, i.e., the input layer, the BiLSTM-
based encoder, and the CRF-based decoder. Given
the input sentence S = w1, w2, ..., wn and the opin-
ion expression segment E = ws, ws+1, ..., we(1 ≤
s ≤ e ≤ n), the input vector consists of the word
embeddings and the expression-indicator embed-
dings as the following equation shows:

xi = eword
wi
⊕ eexp0/1 (1)

where eword
wi

is the embedding of word wi, and the
expression-indicator embedding is eexp0 for non-
expression words and eexp1 for words inside the



opinion expression (i.e., s ≤ i ≤ e). At the en-
coder layer, we apply three stacking layers of BiL-
STM to fully encode the sentence and obtain the
expression-specific representations at word level.
The CRF-based decoder at the output layer delivers
the globally optimal sequence tags.

The Biaffine parser is the state-of-the-art de-
pendency parser proposed by Dozat and Manning
(2017), as shown in Figure 2-(b). The parser con-
tains a multi-layer BiLSTM layer for encoding the
input sentence, followed by a biaffine transforma-
tion layer for computing the probabilities of all
word pairs. Then it searches for the highest-scoring
and well-formed tree via the maximum spanning
tree (MST) algorithm.

The three cascaded layers, i.e., the BiLSTM-
based encoder, the biaffine scorer, and the MST
decoder, represent syntactic information at differ-
ent levels. The encoder extracts the neural features
from the input sentence and outputs hidden states
(HDN), which can be regarded as implicit infor-
mation. The 1-best output parse tree, on the other
hand, conveys explicit syntactic structures. The
biaffine scorer gives a probability matrix for all
possible dependency arcs (also can be viewed as an
edge-weighted directed graph), which represents
richer explicit syntactic information than the 1-best
parse tree.

4 The Syntax-Aware Approach

Despite of recent advances in dependency parsing
(Dozat and Manning, 2017), parsers still cannot
output parse trees with high accuracy on out-of-
domain or irregular data. In this work, we exploit
rich syntactic information contained in the edge-
weighted graphs to mitigate the effects of parsing
errors. Specifically, we firstly employ graph con-
volutional networks (GCN) to encode the edge-
weighted graphs, and then integrate them into dif-
ferent processing levels of ORL with implicit parser
hidden states. Finally, we employ novel MTL
frameworks to alleviate the error propagation prob-
lem further.

4.1 Dependency Graph Convolutional
Networks (DEPGCN)

In this subsection, we propose dependency graph
convolutional networks (DEPGCN) to better en-
code the syntactic information from the edge-
weighted graphs. On the one hand, compared with
explicit 1-best parse trees, edge-weighted graphs

convey richer structural information by providing
all latent syntactic structures, and avoid error prop-
agation as well. On the other hand, compared with
the implicit hidden states of the parser encoder
(Zhang et al., 2019a; Xia et al., 2019a), an edge-
weighted graph, denoted as an attention matrix, ex-
plicitly captures the modification strength of word
pairs.

The original GCN is designed for directly model-
ing graph-structured data (Kipf and Welling, 2016).
Although each node only receives information from
its immediate neighbors through edges in one GCN
layer, multi-layer GCN can propagate information
more globally if there exist connected paths. For-
mally, the output of node i at the l-th layer of GCN
is computed by the following equation:

h
(l)
i = F

 n∑
j=1

AijW
(l)h

(l−1)
j + b(l)

 (2)

where A is the adjacency matrix of a graph with
n nodes, W(l) and b(l) are the model parameters,
F is an activation function. h0

i is the initial input
vector.

As shown by Figure 2-(e), we apply DEPGCN
to connect the parser model and the ORL model.
We first obtain the edge-weighted graph from the
decoder of a well-trained biaffine parser as a data
preprocessing step, and then feed the graph into
our DEPGCN in the form of an adjacency ma-
trix A 1. Then we feed the outputs of the ORL
BiLSTM-based encoder as the initial inputs h0 to
the DEPGCN. Finally, we feed the output of the
DEPGCN to the CRF-based decoder, and update
the ORL results under the guidance of the syntactic
information.

Moreover, we introduce dense connections to
the multi-layer DEPGCN for extracting more struc-
tural information (Huang et al., 2017; Guo et al.,
2019). Instead of only adding connections between
adjacent layers, we use dense connections from
each layer to all the subsequent layers. Formally,
the input of node i at the l-th layer is:

x
(l)
i = h

(0)
i ⊕ h

(1)
i ⊕ · · · ⊕ h

(l−1)
i

(3)

where h
(l)
i is the output of node i at the l-th layer.

We also make residual connections over DEPGCN
to mitigate the vanishing gradient problem, which

1Moreover, following Marcheggiani and Titov (2017), we
also add a self-loop for each node in the graph, which means
all diagonal elements of A are set to 1.



means that the output dimension of each DEPGCN
layer is decided by the layer number and the input
dimension of the bottom DEPGCN.

4.2 Combining Explicit and Implicit Syntax
(DEPGCN+DEPHDN)

Different from explicit 1-best parse trees or edge-
weighted graphs, hidden states of the BiLSTM en-
coder of a dependency parser provide useful syn-
tactic knowledge and are less sensitive to parsing
errors. Using such implicit syntactic representa-
tions has been demonstrated to be highly effective
for downstream tasks (Zhang et al., 2019a; Xia
et al., 2019a). In this section, we describe how
to integrate implicit syntactic information from
parser hidden states and explicit syntactic infor-
mation from the edge-weighted graph into the ORL
model for better performance.

We first briefly describe the use of the depen-
dency parser’s hidden states, named as DEPHDN.
As shown by Figure 2-(d), we extract the outputs
from the parser encoder and feed them into the
BiLSTM-based encoder of ORL as extra inputs.
The hidden states of each parser BiLSTM layer
are obtained as the syntactic representations, i.e.,
h
(l)
1 , · · · ,h

(l)
n , where h(l)

n is output of the l-th layer
of the parser BiLSTM encoder at wn. Then, we use
the weighted-sum operation to get a single vector
hsyn
i as the final syntactic representation of word
wi.

hsyn
i = Wλ

L∑
j=1

αjh
j
i (4)

where L is the layer number of parser BiLSTM-
based encoder; W, αj and λ are model parameters;
αj is softmax-normalized weights for hj ; λ is used
to scale the syntactic representations. The syntac-
tic representations hsyn

i are concatenated with the
original ORL input vectors, so that richer word
representations are obtained.

Furthermore, in order to simultaneously benefit
from the implicit and explicit syntactic informa-
tion, as shown in Figure 2-(f), we simply extract
the edge-weighted graph from the parser decoder
and apply the DEPGCN approach over the ORL
encoder to obtain syntax-enhanced representations.

4.3 Pipeline vs. Multi-Task Learning
The three approaches, depicted in Figure 2-(d-f)
respectively, can work either in the pipeline way
or in the MTL way. Specifically, the pipeline way

first trains the dependency parser and then fixes
the parser components during training the ORL
model. In contrast, the MTL way trains both the
parser and the ORL model at the same time. In this
subsection, we explore the MTL way to alleviate
the error propagation problem further besides the
DEPGCN approach.

As a baseline, Figure 2-(c) shows the most com-
mon MTL method, which shares a common en-
coder and uses multiple task-specific output layers,
known as the hard-parameter-sharing MTL (Ruder,
2017; Marasović and Frank, 2018). However, this
approach is not suitable for our scenario where the
auxiliary parsing task has much more labeled data
than the main ORL task, since the shared encoder
is very likely to bias toward to parsing performance
(Xia et al., 2019a).

Inspired by Xia et al. (2019a), we adopt the ar-
chitectures of Figure 2-(d-f) to keep task model pa-
rameters separately, and train ORL and the parser
simultaneously. We update model parameters ac-
cording to the combined loss of the ORL and the
dependency parser during training:

ζ = ζORL + αζDep (5)

where ζORL and ζDep is the loss of the ORL model
and the parser respectively, and α is a corpus
weighting factor to control the loss contribution
of the dependency data in each batch as discussed
in Section 5.

Compared with the previous pipeline training
process, the parameters of the parser are not pre-
trained and fixed, but updated by training objec-
tives of both ORL and the parser. This results in a
ORL-preferred dependency parsing model.

5 Experiment Setup

Dataset. We conduct experiments on MPQA
version 2.0 corpus (Wiebe et al., 2005), which
has been widely adopted as a benchmark dataset
for opinion mining (Katiyar and Cardie, 2016;
Marasović and Frank, 2018; Zhang et al., 2019b).
In this work, we adopt the same data split (132/350
documents as dev/test data) and the same five-fold
cross-validation (CV) data split on the test data as
Zhang et al. (2019b) for a fair comparison.

Evaluation Metrics. Unless specified, we use
recall (R), precision (P) and their F1 measure value
of exact match to evaluate the ORL performance,
and the results are the average of the five-fold
CV experiments. Following Marasović and Frank



(2018) and Zhang et al. (2019b), we also include
the binary and proportional overlap as additional
evaluation metrics.

Dependency Parser. Following the standard
practice in the dependency parsing community, the
original phrase-structure Penn Treebank data are
converted into the Stanford dependencies using
the Stanford Parser v3.3.0. We use the converted
dependency data to train our biaffine parser for ob-
taining the 1-best trees, the edge-weighted graphs,
and the parser hidden states. In addition, we use
the Stanford POS tagger to obtain POS tags for the
biaffine parser. For other settings, we follow the
work of Dozat and Manning (2017).

BERT. We use BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019) to obtain deep contextualized word represen-
tations as our extra inputs. In particular, we use
BERT-base (uncased) model and extract representa-
tions from the top-1 hidden layer. Our experiments
show that using the top-1 layer representations per-
forms better than the more common use of aggre-
gating top-4 hidden layers.2

Parameters. We follow the previous works of
Zhang et al. (2019b) and Marasović and Frank
(2018) without much parameter tuning. Specifi-
cally, we use the pretrained 100-dimensional glove
embeddings (Pennington et al., 2014). The BiL-
STM layer number is set to 3, and the hidden output
size is 200. We apply 0.33 dropout to word repre-
sentation and the hidden states of the BiLSTM. We
choose Adam (Kingma and Ba, 2014) to optimize
model parameters with a learning rate 10−3. The
entire training instances are trained for 30 epochs
with the batch size of 50, and the best-epoch model
at the peak performance on the dev corpus is cho-
sen. For the MTL, We train the batches of ORL and
parsing in turn since this interleaving training can
obtain better performance in our experiments. Be-
sides, we use the corpus weighting trick to balance
the gap in data sizes between the two tasks.

6 Results and Analysis

In this section, we first conduct experiments on
the dev data to verify the effectiveness of our pro-

2In fact, we also investigate another typical use of BERT,
i.e., the fine-tuning method. However, the ORL performance
is much lower than the feature extraction method described
above. Besides, considering the training speed and flexibility
in our proposed syntax-aware model, it is more flexible to
adopt the feature extraction method, i.e., extracting BERT
outputs as extra word representations (frozen during training).

P R F1
w/o Syntax

BASELINE 59.08 55.15 57.02
w/ Explicit Info.

DEPHEAD 60.82 55.30 57.91
TREELSTM 60.85 55.25 57.90
DEPGCN-HARD 61.10 56.16 58.50
DEPGCN 61.53 57.26 59.28

w/ Implicit Info.
DEPHDN 63.42 59.61 61.45

Explicit & Implicit
DEPGCN+DEPHDN 63.80 61.43 62.58

Table 1: Experiments with explicit and implicit syntac-
tic information on the dev dataset.

posed approaches from several aspects: 1) how to
effectively use explicit syntactic information; 2)
usefulness of explicit vs. implicit syntax and their
combination; 3) which MTL framework is most
effective. Then we present overall results on the
test dataset, with and without BERT. Finally, we
conduct detailed analysis to gain more insights.

6.1 Using Explicit Syntax

In order to know the best way to use explicit in-
formation from the dependency parser, we conduct
comparative experiments by integrating the infor-
mation of the explicit 1-best trees or the explicit
edge-weighted graphs. The second major row of
Table 1 shows the results of integrating such ex-
plicit syntactic information on the dev data.

In particular, BASELINE uses no syntactic in-
formation, known as the syntax-agnostic method;
DEPHEAD concatenates an extra embedding of the
head word in the 1-best parse tree with the original
input; TREELSTM applies the TreeLSTM to en-
code the 1-best tree structures; DEPGCN applies
GCN to encode the edge-weighted graphs. For
DEPGCN-HARD, the 1-best tree is converted to a
binary adjacency and is encoded by DEPGCN.

It is obvious that using explicit syntactic infor-
mation is helpful for ORL. All the syntax-aware
models improve the performance by 0.88∼ 2.26
F1 score. The DEPHEAD approach is the most in-
tuitive way to represent syntactic information by
using head word embeddings, which serves as a
simple syntax-aware baseline method. The TREEL-
STM approach encodes 1-best tree recursively in
a much more complex way, but achieves nearly
the same performance with the DEPHEAD method.
We suspect the reason may be that the TREELSTM
method is prone to parsing errors.

The DEPGCN-HARD approach also encodes



Multi-task learning P R F1
M-BASELINE 62.23 56.84 59.39
M-DEPGCN 65.59 61.61 63.52
M-DEPHDN 65.74 63.67 64.68
M-DEPGCN+DEPHDN 65.94 64.15 65.03

Table 2: Experimental results under the MTL frame-
work on the dev dataset.

the 1-best tree, and achieves higher performance.
Compared with the TREELSTM approach, the
DEPGCN-HARD approach is less sensitive to pars-
ing errors, since a GCN layer only considers local
adjacent structures and performs one-hop informa-
tion propagation, whereas a TreeLSTM propagates
information in either bottom-up or top-down order
where earlier errors affect later computations a lot.

The best result of exploiting explicit information
is obtained by the DEPGCN method, which is able
to integrate richer structural information from edge-
weighted graphs.

6.2 Explicit vs. Implicit Syntax, and
Combination

The bottom two major rows of Table 1 show the
results on the dev data. DEPHDN exploits implicit
information of parser hidden states.

We can see that the implicit DEPHDN method
outperforms the best explicit DEPGCN method
by 2.17 F1 score, indicating the effectiveness of
the integration of parser hidden states, which is
consistent with previous studies on the SRL task
(Xia et al., 2019a). The advantage of using implicit
hidden states is being able to greatly alleviate the
error propagation from explicit parsing results.

We further simultaneously integrate explicit and
implicit syntactic information into one model,
which achieves the best performance of 62.58 F1
score, and outperforms the syntax-agnostic base-
line and the DEPHDN method by 5.56 and 1.13 F1
scores, respectively. This demonstrates that ORL
can benefit from both explicit and implicit syntactic
information.

In summary, we can conclude that encoding the
edge-weighted graphs is more effective than the 1-
best trees, and combining both explicit and implicit
syntactic information brings higher performance
than either.

6.3 Effects of Multi-Task Learning

In order to alleviate the error propagation prob-
lem and explore better integration of different ap-

proaches, we apply MTL frameworks to the above-
mentioned pipeline architectures.

Table 2 shows the results of the MTL settings
with previously better-performing configurations
on the dev dataset, together with a commonly used
hard-parameter-sharing MTL for parsing and ORL.
M-BASELINE serves as an MTL baseline, which
shares the encoder for the two tasks (Figure 2-c).
M-DEPGCN and M-DEPHDN respectively ap-
ply the DEPGCN and DEPHDN approaches under
our MTL framework, and M-DEPGCN+DEPHDN
combines them.

Firstly, although sharing the encoder of the
parser and ORL already brings in more than 2
F1 score improvement compared with the syntax-
agnostic baseline (BASELINE), it is much inferior
to other MTL approaches and the pipeline DE-
PHDN method (comparing Table 1). This may
be caused by the weakness of the encoder param-
eters for ORL, as discussed in Section 4 and Xia
et al. (2019a).

Secondly, compared with the corresponding ap-
proaches under the pipeline architecture, all ap-
proaches under our MTL framework improve the
performance by 2.45∼4.24 F1 scores, which indi-
cates that MTL is highly effective in alleviating the
error propagation problem.

Finally, the combination of the explicit edge-
weighted graphs and the implicit parser hidden
states is still the most effective model under the
MTL framework, outperforming the BASELINE in
Table 1 by 8.01 F1 score.

6.4 Final Results

In this section, we report the overall performance of
our approaches compared with previous methods
on the test data, as shown in Table 3.

In particular, we list our syntax-agnostic base-
line (BASELINE in Table 1), others’ works (Zhang
et al. (2019b) and Marasović and Frank (2018),
using SRL for ORL), best non-MTL approaches
based on our results on the dev data (DEPGCN
for explicit syntactic information and DEPHDN
for implicit syntactic information), and finally the
MTL-based models. The results of BASELINE with
BERT and our best model with BERT are also listed
to demonstrate the contributions from the contextu-
alized word representations.

We can draw the following findings.

• Combining explicit and implicit syntactic in-
formation improves the performance, indicat-



Exact F1 Binary F1 Proportional F1
Holder Target Overall Holder Target Overall Holder Target Overall

Basic Model
BASELINE 73.05 44.21 58.79 81.21 69.50 75.43 79.33 62.53 71.03
BASELINE+BERT 76.74 52.61 64.73 85.45 75.74 80.62 83.58 69.31 76.48
Zhang et al. (2019b) 73.07 42.70 58.30 81.57 68.34 75.15 79.35 61.22 70.55

w/ SRL
Marasović and Frank (2018) 75.58 46.40 61.51 83.80 72.06 77.87 81.67 65.18 73.61
Zhang et al. (2019b) 76.95 50.50 63.74 84.91 73.29 79.10 82.82 67.31 75.08

w/ Syntax
DEPGCN 73.82 45.97 60.12 81.11 68.54 74.93 79.15 61.96 70.70
DEPHDN 76.96 46.95 62.29 83.79 70.20 77.15 82.44 63.56 73.21
DEPGCN + DEPHDN 76.21 49.38 63.12 83.0 72.25 77.81 81.58 66.59 74.28

w/ Syntax + MTL
M-DEPGCN 77.50 50.78 64.28 84.17 72.91 78.60 82.77 66.77 74.85
M-DEPHDN 77.36 50.81 64.31 84.35 72.45 78.50 82.95 66.51 74.87
M-DEPGCN+DEPHDN 78.01 51.92 65.13 84.97 73.36 79.24 83.67 67.77 75.82
M-DEPGCN+DEPHDN+BERT 79.51 56.61 68.08 87.09 76.99 82.04 85.70 72.32 79.01

Table 3: Overall experimental results on the test dataset.
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Figure 3: Performance on predicting arguments with different span lengths and distances to the expressions.

ing they are complementary to each other.

• Compared with the DEPGCN and DEPHDN
approaches (i.e., explicit or implicit only), the
DEPGCN+DEPHDN approach achieves bet-
ter performance on both Holder and Target
recognition.

• All of the MTL configurations boost the per-
formance compared with their pipeline coun-
terparts, as ORL-oriented parsing models are
learned, and the error propagation problem is
less severe.

• Our best syntax-aware MTL model combined
with BERT achieves the best performance,
outperforming the baseline with BERT by
more than 3 F1 score.

• Compared with the previous state-of-the-art
methods, we obtain 4.34 and 1.39 improve-
ment of F1 scores with and without BERT,

respectively. Overall, our best model achieves
9.29 higher F1 score over the syntax-agnostic
baseline.

6.5 Further Analysis
In this section, we conduct analysis to better under-
stand the contributions from the syntactic informa-
tion and BERT. In particular, we compute the exact
F1 score according to different lengths of opinion
arguments, as well as different distances between
the arguments and their corresponding expressions.

Influence of Syntax. Figure 3-(a-b) show the ef-
fects of syntax on predicting arguments of different
span lengths and distances to their expressions, re-
spectively. We observe that 1) the performance of
combining explicit and implicit syntactic informa-
tion is always higher than either of them, while
the DEPGCN and DEPHDN approaches compen-
sate each other at different argument span lengths;
and 2) MTL performs better than the best pipeline



US and UK Criticise Mugabe ’s Victory
Gold Holder Target

Base Target

+BERT Holder Target

+Syntax Holder Target

Figure 4: An example of different ORL outputs for “US
and UK Criticise Mugabe ’s Victory”.

model consistently, which indicates that the usage
of syntax is further enhanced as the error propaga-
tion is less severe.

Influence of BERT. Figure 3-(c-d) show the sim-
ilar graphs of the best syntax-aware model and
BERT. Firstly, both M-Comb and BERT bring
substantial improvements over the syntax-agnostic
baseline. Secondly, despite that the syntactic in-
formation and BERT are similar in the overall per-
formance, the syntactic information is more effec-
tive for arguments with longer spans and farther
distances to the expressions, as the syntax helps to
capture long-distance dependencies between words.
And lastly, the integration of syntax and BERT can
further improve the performance, demonstrating
that contributions from the two are complementary.

Case Study. One case study is given in Figure
4. In this example, the gold holder “US and UK”
is difficult to be identified by the baseline model.
Even with the help of BERT, which brings more
contextual information, the model still only cap-
tures one of them, the closest holder “UK”. Our
syntax-aware model accurately predicts the holder
due to the coordination structure being captured by
the syntactic dependency information.

7 Conclusions

In this paper, we present a syntax-aware opinion
role labeling approach based on dependency GCN
and MTL. We compare different representations
of syntactic dependency information and propose
dependency GCN to encode richer structural in-
formation from different processing levels of the
parser. The MTL framework further boosts the
performance, and together with BERT, our best
model achieves a new state-of-the-art result on the
widely-used ORL benchmark MPQA corpus. Over-
all, our syntax-aware model brings in about 9.29
improvement of exact F1 score compared with the
syntax-agnostic baseline.
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