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Abstract

In this paper, we introduce Clinical-Coder, an
online system aiming to assign ICD codes to
Chinese clinical notes. ICD coding has been
a research hotspot of clinical medicine, but
the interpretability of prediction hinders its
practical application. We exploit a Dilated
Convolutional Attention network with N-gram
Matching Mechanism (DCANM) to capture
semantic features for non-continuous words
and continuous n-gram words, concentrating
on explaining the reason why each ICD code
to be predicted. The experiments demonstrate
that our approach is effective and that our sys-
tem is able to provide supporting information
in clinical decision making.

1 Introduction

International Classification of Disease (ICD) is the
diagnostic classification standard in the field of
clinical medicine, which assigns unique code to
each disease. The popularization of ICD codes
immensely promotes the information sharing and
clinical research of disease worldwide and has a
positive influence on health condition research, in-
surance claims, morbidity and mortality statistics
(Shi et al., 2017). Therefore, ICD coding – which
assigns proper ICD codes to a clinical note – has
drawn much attention.

It is always that ICD coding relies on the manual
work of professional staff. The manual coding
is very error-prone and time-consuming since the
continuous updating version of ICD codes results
in a substantial increase in code numbers. The
number of ICD-10 codes is up to 72,184, more
than five times the previous version (i.e., ICD-9). It
allows for more detailed classifications of patients’
conditions, injuries, and diseases. However, there
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is no doubt that the increased granularity increases
the difficulty of manual coding.

Existing studies came up with several ap-
proaches of automatic coding prediction to replace
the repetitive manual work, from the traditional
machine learning methods (Perotte et al., 2013;
Koopman et al., 2015), to neural network methods
(Shi et al., 2017; Yu et al., 2019). Although these
methods achieve great success, they are still con-
fronted with a critical challenge, which is the inter-
pretability of predicted codes. Explainable model
and results are essential for clinical medicine deci-
sion making (Mullenbach et al., 2018). Thus, the
practical approach is supposed to predict correct
codes and simultaneously give the reason why each
code is predicted.

Figure 1: Two kind of semantic phenomenon: explicit
semantic features and implicit semantic features.

In this paper, we try to provide the interpretabil-
ity of predictions from a semantic perspective. It is
a phenomenon that the exact disease names or simi-
lar expressions of disease names often appear in the
discharge summary. For example, as shown in Fig-
ure 1, the exact matching with disease name such
as “fatty liver” is a direct evidence of inference.
We call the continuous consistent words as explicit
semantic features. Moreover, the inexact matching
such as “rheumatoid multisite arthritis” is also very
useful to predict the codes and should be taken
into consideration. We refer to the non-continuous



Figure 2: The screenshot of Clinical-Coder system, the English version can be found in the appendix A. (a) gives
the predicted diseases after users enter the clinical notes which contains four parts, admission situation, admission
diagnosis, discharge situation and discharge diagnosis. (b1) and (b2) are the visualization of supporting information
for predictions.

words as implicit semantic features. The two kinds
of semantic features are both clues to explain the
reason why to assign each code, which is also the
basis of experts in manual coding process. To cap-
ture the two semantic phenomena, we exploit di-
lated convolution and n-gram matching mechanism
to extract implicit semantic features and explicit
semantic features, respectively. Furthermore, we
develop a system to assist the professional coders
in assigning the correct codes. In summary, the
main contributions are as follows:

• We collect a large-scale Chinese Clinical
notes dataset, making up for the lack of Chi-
nese ICD coding corpus.

• We propose a novel method to simultaneously
capture implicit and explicit semantic features,
which enables to give interpretability for each
predicted code.

• We develop an open-access online system,
called clinical-coder, that automatically as-
signs codes to the free-text clinical notes
with an indication of the supporting informa-
tion for each code to be predicted. It uses
vivid visualization to provide interpretabil-
ity of prediction for each ICD code. The
site can be accessed by http://159.226.

21.226/disease-prediction, and instruc-
tions video is provided at https://youtu.

be/U4TImTwEysE.

Figure 2 illustrates an example of the automatic
coding for a Chinese Clinical note in our system

(For the convenience of readers, the English version
is included in the appendix A). The left of Figure 2
(a) is the free-text notes user entered, and the right
of Figure 2 (a) is predicted codes and correspond-
ing disease names. Figure 2 (b1) and Figure 2 (b2)
are the visualization of supporting information for
predictions. The detailed description is presented
in the section 3.2.

2 Related Work

2.1 Automatic ICD coding

Automatic ICD coding has recently been a research
hotspot in the field of clinical medicine, where neu-
ral network architecture methods show promising
results than traditional machine learning methods.

Most studies treat automatic ICD coding as a
multi-label classification problem and use only the
free-text in summaries to predict codes (Subotin
and Davis, 2015; Kavuluru et al., 2015; Yu et al.,
2019), while many methods benefit from extra in-
formation. Shi et al. (2017) encode label descrip-
tion with character-level and word-level long short-
term memory network. Rios and Kavuluru (2018)
encode label description with averaging words em-
bedding. Furthermore, adversarial learning is em-
ployed to unify writing styles of diagnosis descrip-
tions and ICD code descriptions (Xie et al., 2018).
Besides code descriptions, Wikipedia comes to be
regarded as an external knowledge source (Prakash
et al., 2017; Bai and Vucetic, 2019).

Additionally, inferring interpretability is a cru-
cial challenge and obstacle for practical automatic
coding, since professionals are willing to be con-
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Figure 3: The whole architecture of the model. The input is the clinical text, and output is the ICD codes. The
yellow dotted box indicates how to use attention-based dilated convolution to capture the implicit semantic of non-
continuous words. The green dotted box indicates how to use n-gram matching mechanism to capture the explicit
semantic of continuous n-gram words.

vinced by the model insights of vital supporting in-
formation or decision-making process (Vani et al.,
2017; Mullenbach et al., 2018). Baumel et al.
(2018) employ bidirectional Gated Recurrent Unit
with sentence-level attention to obtain relevant sen-
tences for each code. Mullenbach et al. (2018) use
attention at the word level, which is more fine-
grained. Our work is inspired by (Mullenbach
et al., 2018), assigning the importance value for
each label to the discharge summaries to assists in
explaining the model prediction process.

2.2 Dilated Convolution
Dilated convolution is designed for image classifi-
cation to aggregate multi-scale contextual informa-
tion without losing resolution in computer vision
(Yu and Koltun, 2016). It inserts “holes” in the
standard convolution map to increase the reception
field. The hole-structure brings a breakthrough
improvement to the semantic segmentation task.

Similarly, several hole-structured convolution
neural networks (CNNs) (Lei et al., 2015; Guo
et al., 2017) are designed to handle natural lan-
guage processing tasks. In the text, there exists non-
continuous semantic where useless information
may be interspersed among the sentences. Holes in
the dilated convolution can ignore the extra word
between the non-continuous words and well adapt
to match non-continuous semantic. Since the se-
mantic infomation is crutial when understanding

natural language(Zuo et al., 2019), we apply the
dilated convolution to encode the text, capturing
the non-continuous semantic information.

3 Clinical Coder System

3.1 Method
We propose a Dilated Convolutional Attention
network with N-gram Matching Mechanism
(DCANM) for ICD coding task. Figure 3 describes
the architecture of the model. The input of model
is all sentences in clinical notes, which are spliced
together. The input sentences interact with ICD
code names to capture explicit semantic features
and generate an n-gram matrix. At the same time,
the input sentences are transformed into vector and
processed by dilated CNN to capture implicit se-
mantic features. Attention mechanism is used to
improve the performance. Then all features are
concatenated to form the final features. Finally, we
use a sigmoid classifier to predict the probability of
each code. Next, we give the detailed descriptions.

Word Embedding. Word embedding is a low-
dimensional vector representation of a word. We
use the pre-trained embedded matrix Wwrd ∈
Rdw×|V |, where dw is the dimension of word em-
bedding and |V | is the size of vocabulary. Given
a sentence, S = [w1, w2, ..., wN ], where N is the
number of words in the sentence, we can get the
word embedding by:



we =Wwrdvi, (1)

where vi is the one-hot representation of the current
word in the corresponding column of Wwrd.

Explicit Semantic Features. N-gram matching
mechanism is applied to capture explicit semantic
features. We use disease names (D) to sampling
on the text (T). First, move the sliding window on
the disease name dl ∈ D to get a n-gram substring.
Then, calculate the frequency of each n-gram sub-
string in the free-text. The sum of frequencies of
gram with same length n (denoted as gramn) has
reflected the emergence of disease names in the
text, nevertheless some grams have their unique
particularity. For example, given a 2-gram string,
“糖尿” (Diabetes) is more representative than “慢
性”(Chronic) though they have the same length.
To represent the degree of importance of different
n-gram, each n-gram is given a term frequency-
inverse document frequency (tf-idf) weight. Finally,
for each free-text clinical note, we calculate an
explicit semantic n-gram matrix (M ) with size of
L ×W , where L is numbers of labels and W is
the numbers of sliding windows. For example, we
have four sliding windows which lengths are 2, 3,
4, 5, so W is 4. For the l-th row the w-th column
item in the feature map, we have:

ml,w =

Lgramln∑
i=1

countgramlni
∗ tf idfgramlni

(2)

tf idfgrami =
n

Lnl

∗ L

freqgramlni

, (3)

where w is the index of n-length sliding window,
gramln is all n-length substrings of the l-th disease
name, gramlni is the i-th gramln, Lgramln

is the
number of gramln, countgramlni

is the frequen-
cies of gramlni in the text, Lnl

is the length of the
l-th disease name, freqgramlni

is the frequencies
of gramlni in all disease names.

In this calculation, we can distinguish the im-
portance degree of n-gram substring. It also works
on English clinical notes, for instance, in a spe-
cific case from MIMIC-III (Johnson et al., 2016),
the tf-idf value of “history of” is 1.79 while “atrial
fibrillation” is 9.32 because “history of” appears
249 times in all ICD disease names and “atrial fib-
rillation” only appears two times. The higher the
value is, the more representative the word is. There-
fore “atrial fibrillation” is more likely to indicate a
disease than “history of”.

Implicit Semantic Features. Dilated convolu-
tion is applied to capture implicit semantic fea-
tures. For a long clinical text, dilated convolution
extends the reception field in the situation of not
using pooling operation so that every kernel has a
wider range of information. More importantly, it
has “holes” in convolution map, which means it can
be adapted to match the non-continuous semantic
information. For example, “类风湿性多部位关节
炎”(Rheumatoid multisite arthritis) in the clinical
notes refers to “类风湿性关节炎”(Rheumatoid
arthritis) in ICD, the convolution map with holes
can tolerate the redundant parts, as shown in Figure
4. It is a distinct advantage of dilated convolution
for processing texts.

Figure 4: An example of the dilated convolution in pro-
cessing text.

Formally, the actual filter width of dilated con-
volutional neural network is computed as,

kd = r(k − 1) + 1, (4)

where r ∈ [1, 2, 3, ...] is the dilated rate, k is the
origin filter width.

For each step n, the typical convolution is com-
puted as formula 5 and dilated convolution is com-
puted as formula 6. The dilated CNN is same as
typical CNN when the dilated rate is 1, since kd
equals to k when r = 1:

hn = tanh(Wc ∗ xn:n+k−1 + bc) (5)

h′n = tanh(Wc ∗ xn:n+kd−1 + bc), (6)

where Wc ∈ Rkd×de×dc is the convolutional filter
map, kd is the actual filter width, de is the size of
the word embedding, an dc the size of the filter
output and bc ∈ Rdc is the bias.

Attention. After convolution, the sentence is rep-
resented as H ∈ Rdc×N . We employ the per-label
attention mechanism (Mullenbach et al., 2018) to
find the most contributed characters for each label.

For each label l, the distributed attention weight
is computed as:

αl = SoftMax(HTul), (7)



where ul ∈ Rdc is the vector representation of label
l. Finally, the sentence is represented as:

ml = Hαl (8)

We employ attention both for typical CNN and
dilated CNN, for convenience of distinction, we
denote them as ml and m′l, respectively.

Classification. ml and m′l is concatenated with
the linear transformed n-gram matrix horizontally.
The aim of this step is to combining all the features
together. Then we exploit sigmoid classifier and
the prediction of label i is computed as,

ŷi = σ(W T [ml;m
′
l;m

′′
l ] + b), (9)

where i ∈ [1, 2, ..., L],W ∈ R3dc , b is the bias,m′′l
is the linear projection of n-gram matrix(M ).

The loss function is the multi-label binary cross-
entropy (Nam et al., 2013).

L =
L∑
i=1

[−yilog(ŷi)−(1−yi)log(1− ŷi)], (10)

where yi ∈ {0, 1} is the ground truth for the i-th
label and ŷi is the sigmoid score for the i-th label.

3.2 User Interface
Figure 2 illustrates the user interface of our system.

User Input. The left of Figure 2(a) displays the
user input. The user enters the whole free clinical
note, which includes at least one from admission
situation, admission diagnosis, discharge situation,
and discharge diagnosis into the input box.

Predicted Labels. The predicted labels are pre-
sented in the list of Figure 2(a), including disease
name and homologous ICD codes. The number
of predicted codes are not always the same as the
diseases in discharge diagnosis, because clinicians
may leave out certain diseases and several diag-
noses should be combined into one ICD code(Shi
et al., 2017). Our model can list all these diseases,
and give the reason why they should be predicted.

Interpretability. Interpretability is a critical as-
pect of the decision-making system, especially in
the clinical medicine domain. In our system, we
give two ways, n-gram matching mechanism and
attention, to assist users in understanding why each
code is predicted. A user can know why the model
predicted the labels, and what the key information
in its decision was:

(1) N-gram Matching Mechanism. When a pa-
tient suffering from a disease, the corresponding
text span related to disease names often appear in
the discharge summary. As shown in Figure 2 (b1),
the gram in disease name is highlighted to give a
hint to users if it appears in the clinical text. High-
lighting not only tells users why we predict each
code but also prompts the place of the important
information.

(2) Attention. As shown in Figure 2 (b2), the
red background is attention distribution, and the
darker the color is, the more useful the word is to
predict the current label. The darker color is also
helpful and attractive for human-being to double-
check the correction of labels.

4 Experiments

4.1 Dataset

We evaluate our model on both Chinese and En-
glish datasets. The Chinese dataset, collected by us,
contains 50,678 Chinese clinical notes and 6,200
unique ICD-10 codes. For each clinical note, it
contains five parts: admission situation, admission
diagnosis, discharge situation, discharge diagnosis
and annotated ICD-10 codes. Admission situation
involves chief complaints, past medical history, etc.
Discharge situation involves the results of general
examination. Admission diagnosis and discharge
diagnosis involve disease names, which may not be
totally consistent with standard names in ICD-10.
The manually annotated codes are based on ICD-
10, which are tagged by professional coders after
reading through the whole clinical note.

CN-Full CN-50 MIMIC-III-50
# Samples 50,678 36,758 9,795
# Labels 6200 50 50

Vocabulary size 3,957 3,957 51,917
# Average tokens per sample 621 655 1,530
# Average labels per sample 4.3 2.6 5.7

Table 1: Detailed information for three datasets.

The dataset (CN-Full) is formed with full labels
mentioned above, and it is divided into train set and
test set with the radio of 9:1. In addition, due to
the phenomenon that massive codes are infrequent,
and a small amount of codes are high-frequent, we
reconstructed a sub-dataset (CN-50) with the most
frequent 50 codes from the original dataset. The
specific process is that filtering the origin train set
and test set, and maintain the data which has at
least one of the top 50 most frequent codes.



Dataset CN-Full CN-50

Model
F1 AUC R@k F1 AUC R@k

Macro Micro Macro Micro k=5 k=10 Macro Micro Macro Micro k=5 k=8

CAML(Mullenbach et al., 2018) 0.0600 0.6755 0.8832 0.9808 0.6099 0.7651 0.8305 0.8458 0.9846 0.9902 0.8796 0.9579
Dilated CNN 0.1017 0.6997 0.8637 0.9772 0.6268 0.7864 0.8399 0.8523 0.9849 0.9904 0.8807 0.9550

N-gram Matching 0.1200 0.7050 0.9574 0.9915 0.6393 0.8036 0.8385 0.8543 0.9867 0.9922 0.8900 0.9640
DACNM 0.1116 0.7127 0.9520 0.9909 0.6430 0.8043 0.8452 0.8602 0.9878 0.9932 0.8895 0.9657

Table 2: Evaluation on Chinese dataset CN-Full and CN-50.

To better compare with the previous works, we
also evaluate our method on the MIMIC-III dataset
(Johnson et al., 2016), which is the most authorita-
tive English dataset for evaluating the performance
of automatic ICD coding approaches. The detailed
description for these datasets is listed in Table 1.

4.2 Data Preprocess and Parameters

We splice the admission situation, admission diag-
nosis, discharge situation and discharge diagnosis
together, which is the input of the model. The max
length of the input is 1000. The word embedding is
pre-trained using Word2Vec (Mikolov et al., 2013)
with the dimensions of 100. The text is from all
clinical notes. The batch size is 16. The dropout
rate is 0.5. The optimizer is Adam (Kingma and
Ba, 2015) with a learning rate of 0.0001.

We use Micro-F1, Macro-F1, area under the
ROC (Receiver Operating Characteristic) curve
(AUC) and P@k as the metrics. P@k (Precision at
k) is the fraction of the k highest-scored labels that
are present in the ground truth.

4.3 Results

First, for the Chinese dataset (CN-Full and CN-50),
CAML (Mullenbach et al., 2018) is set as our base-
line, which use traditional convolutional attention
network. Moreover, we test the dilated CNN and n-
gram matching mechanism separately. The results
in Table 2 indicate that dilated CNN and n-gram
matching mechanism both have a positive effect on
improving performance from baseline, and the best
results are obtained when they combined.

We also evaluate our method on English dataset
(MIMIC-III-50). The results are shown in Table
3. The CNN and Bi-GRU are the classic methods
and the results are the same as (Mullenbach et al.,
2018). Our proposed model achieves the Micro-
F1 score of 0.641, which outperforms all previous
works, more importantly providing interpretability.

Besides, we notice that macro-F1 measure is al-
ways lower than micro-F1, especially in the full
labels datasets. It means the smaller classes have

Model F1 AUC P@k

Macro Micro Macro Micro k=5
CNN 0.576 0.625 0.876 0.907 0.620

Bi-GRU 0.484 0.549 0.828 0.868 0.591
C-MemNN(Prakash et al., 2017) - - 0.833 - 0.42

(Shi et al., 2017) - 0.532 - 0.900 -
HA-GRU(Baumel et al., 2018) - 0.366 - - -

CAML(Mullenbach et al., 2018) 0.532 0.614 0.875 0.909 0.609
DR-CAML(Mullenbach et al., 2018) 0.576 0.633 0.884 0.916 0.618

DACNM (Proposed model) 0.579 0.641 0.890 0.916 0.616

Table 3: Evaluation on MIMIC-III-50 dataset

poorer performance than larger classes, which is
consistent with the facts. Either MIMIC-III or the
Chinese dataset, the sample distributions are ex-
tremely imbalanced. Minority of codes are highly
frequent, while most codes are infrequent. N-gram
matching mechanism helps improve macro-F1 on
CN-Full dataset obviously, reaching two times than
baseline. It can be inferred that utilizing grams in
disease names is useful for the smaller class.

5 Conclusion

In this paper, we propose a Dilated Convolutional
Attention network with N-gram Matching Mech-
anism (DCANM) for automatic ICD coding. The
dilated CNN, which is first applied to the ICD cod-
ing task, aims to capture semantic information for
non-continuous words, and the n-gram matching
mechanism aims to capture the continuous seman-
tic. They both provide a pretty good interpretability
for prediction. Moreover, we develop an open-
access system to help users assign ICD codes. We
will try to utilize external resources to solve the
few-shot and zero-shot problem in the future.
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Admissions situation:

The middle-aged man was admitted to the hos-
pital because of a “blood glucose increase of 5
years and poor glycemic control in June”. The
patient’s routine physical examination five years
ago revealed an increase in blood glucose, about
9 mmol / L on an empty stomach, and the local
diagnosis was: “type 2 diabetes”. No obvious dry
mouth, frequent drinking, polyuria and weight loss,
no dizziness, no increased urine foam, no numb-
ness in hands, feet, and occasionally blurred vi-
sion. Diet and exercise were used to control blood
glucose. Normally, blood glucose was monitored
irregularly, and fasting blood glucose fluctuated
between 8-9mmol / L. During the course of the
disease, the general condition of the patient is OK,
the diet and sleep are OK, and there is no obvious
abnormality in the stool. The weight loss in the
last 2 months is about 3Kg. Auxiliary examina-
tion B: Ultralow hypoechoic nodules in the right
lobe of the thyroid gland, considering glial cysts;
bilateral carotid atherosclerosis with right plaque
formation; fatty liver; right renal cyst with calcium
milk; enlarged prostate; Atherosclerosis.

Admission diagnosis:

1. Type 2 diabetes 2. Kidney stones 3. Thyroid
nodules 4. Atherosclerosis 5. Fatty liver

Discharge situation:

The patient had no dry mouth and frequent drink-
ing, no polyuria, diet and sleep were OK, physi-
cal examination: clear mind, good spirits, slightly
thicker breathing sounds in both lungs, and no wet
and dry rales. Heart rhythm is uniform, and no
noise is heard. The abdomen is flat, the whole ab-
domen is soft, no tenderness, no tenderness, no
edema in both lower limbs.

Discharge diagnosis:

1.Type 2 diabetes 2. Right renal cyst 3. Thyroid
nodule 4. Atherosclerosis 5. Fatty liver 6. Hyper-
lipidemia

Predicted diseases and codes:

1. Thyroid nodule E04.101
2. Type 2 diabetes E11.9022
3. Hyperlipidemia E78.501
4. Atherosclerosis I70.904
5. Fatty liver K76.001
6. Kidney stones N20.000

7. Acquired renal cysts N28.100


