An Empirical Study:

Post-editing Effort for **English to Arabic** Hybrid Machine Translation

Hassan Sajjad, Francisco Guzman, Stephan Vogel Qatar Computing Research Institute, HBKU

Introduction

• Old Arabic documents

 Translation of metadata from English to Arabic

Traditional Translation Process

British Library

Translators

Problem

Few translation memory matches

 A lot needs to be translated from scratch

• Time and cost inefficient

Solution: Hybrid Machine Translation

High precision translations

100% recall – readily available translations

Hybrid MT: Combines the benefits of both! Translation Memory and Customized MT

Hybrid MT System

Translation Memory

First pass: use strict matching to translate known words and phrases

ΤM

Customized Machine Translation

Second pass: translate the remaining text using machine translation system

Aiming higher: Post Editing for Quality

Post Editors

- High quality
- High consistency
- Cost and time effective

Customized Machine Translation

- A statistical machine translation system
 - Train specific to the domain of the text that needs to be translated
- General practice
 - Use Moses

CMT

- Train on the data of translation memory
- Follow recipe of a competition grade system to ensure high quality

English to Arabic CMT

- Best competition grade pipeline involves
 - Arabic (de-) tokenization
 - Splitting morphologically rich words into smaller segments and vice-versa
 - +2.5 BLEU points improvement
 - Arabic (de-) normalization
 - Mapping different forms of a letter to one form and vice verse
 - +0.5 BLEU point improvement

This ensures high quality but **does not guarantee less frustration for post-editors**

Why?

Translation output requires:

• De-tokenization and de-normalization

- De-normalization introduces character-level errors
 - Frustrating for the post-editor to correct
 - Time inefficient

Recommended Practices for CMT of English-Arabic

• Don't normalize

But

CMT

- Always tokenize
 - Improve coverage of words
 - Better translations

Let's Talk about BL Case Numbers!

We compare:

- Translation Memory (TM) only
- Hybrid MT (TM + CMT)

Looking at:

- Effectiveness
- Quality
- Consistency

Also:

- Translator
- Hybrid MT + Post editing (PE)

Effectiveness of TM

Exact match

Fuzzy match

ONLY

More than 85% of words still need to be translated !!!!

* Based on an assessment over X documents

Proceedings of AMTA 2016, vol. 2: MT Users' Track

Effectiveness of CMT

segments

words

translated!

Effectiveness of Hybrid MT

- High precision
 - TM exact matches
- High recall
 - CMT to produce high quality translations

Assessing Quality

• BLEU

Compare output to 'reference' translation

	Strict	Partial
ТМ	7.07	21.01
TM + CMT	54.60	48.54

CMT alone BLEU scores are 53.90

Assessing Quality

- TER: Translation Error Rate
 - How much effort is needed to get perfect translation
 - Compare Hybrid MT output to 'reference' translation

Assessing Quality

- TER vs. Post editing effort
 - Similar effort estimation using post-editing of Hybrid MT

* PE is based on an assessment over 4 documents, using a junior translator Proceedings of AMTA 2016, vol. 2: MT Users' Track

Consistency of Hybrid MT

- We compared Hybrid MT versus a junior translator
- We measured consistency with reference translations

Hybrid MT is more consistent with reference translations

Speedup of Hybrid MT

• We compared Hybrid MT versus a junior translator

Conclusion

- Hybrid MT
 - High precision and high recall
- Hybrid MT plus Post-editing
 - Efficient in terms of both time and cost
 - Improved consistency

References

- Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and Hamdy Mubarak. Farasa: A Fast and Furious Segmenter for Arabic. In NAACL-2016, San Diego, US.
- Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine translation. In ACL-2007, Prague, Czech Republic
- Hassan Sajjad, Francisco Guzman, Preslav Nakov, Ahmed Abdelali, Kenton Murray, Fahad Al Obaidli, and Stephan Vogel. QCRI at IWSLT 2013: Experiments in Arabic-English and English-Arabic Spoken Language Translation. In IWSLT-2013, Heidelberg, Germany