I Ate Too Much Cake: Beyond Domain-Specific MT Engines

Alex Yanishevsky

How Much Cake Is Too Much Cake?

What is the Tipping Point?

- Criteria for training domain-specific engines
 - ✓ Environment: elegant deployment?
 - ✓ Cost
 - ✓ How different are they from each other
 - Maintenance (engineering and linguistic feedback implementation)
- Trained and deployed over 50 engines in 13 languages (to and from English)
- Corrected over 300 linguistic issues

Implementing Linguistic Feedback

	achine Trans		m				
🖊 Edit	Comm	ent	Assign	Start Progress	Resolve Issue	Close Issue	
Details							
Type:		0 F	E Feedba	ck	Status:		OPEN
Priority:		0	Ø P1		Resolution;		Unresolved
Labels:		Non	e /				
MTPE St	ite:	New	ity logged				
Target Language:		Eng	lish (US)				
Severity:		1					
MTPE En	or Type:	Tern	ninology				
Source Text:		~ 1	5 <c< td=""><td></td><td></td><td></td><td></td></c<>				
Translated Target :		~ 1	~ Lottery				
Suggeste	d Target;	Tabl	Table of Contents				

Key		Summary & Description	Target Language	Source Text	Translated Target	Suggested Target	Translation from New Engine	Comments
		term (Portable devices)						Term translation correct do NOT add to tune or UD: checked with lead translator, and both translations
METH	-136	Portable device = terminal mobile	French	Portable devices	Appareils portables	Terminaux mobiles	Terminaux mobiles	are correct depending on context
		term & gender (appliance)						
		appliance = appliance (masculin)						the set of the set of the set
MTR	143		French	appliance	dispositif	appliance	appliance	add to UD.

Savings on MT per quarter

Proceedings of AMTA 2016, vol. 2: MT Users' Track

Austin, Oct 28 - Nov 1, 2016 | p. 268

MT Usage Per Month

Proceedings of AMTA 2016, vol. 2: MT Users' Track

Austin, Oct 28 - Nov 1, 2016 | p. 269

Challenges for Mature MT Programs

- Engage in only those activities that can have an objective, measurable value and/or ROI to the program
- Be wary of not making the engines worse a threshold beyond which re-training may not be optimal
- Less concerned with automatic scoring as the overriding benchmark for quality since the engines are already at a high quality level
- Stress should be diverted to greater lexical coverage and to fixing high priority and/or high severity linguistic issues that occur numerous times in a corpus

Opportunities for Mature MT Programs

- Pushing the MT engagement upstream
- Analyzing the source content for suitability
- A correlation between the quality of source and the quality and efficacy of MT
- Forecast an MT program, including expected productivity and discounts and make data-driven decisions about the source and its impact before any MT even takes place

Workflow

What is Style?

- Style Can be Formally Defined in a Style Guide That Authors & Translators are Requested to Adhere to (But it Doesn't Have to Be)
- Style is a Consistency of Voice Across Multiple Documents
- Style Tells us Something About the Target Audience
- Style Tends to Reflect Patterns of Conscious Grammatical Decisions
- For the Purposes of Style Scorer, the Documents Define the Style, Rather than the Style Defining the Documents

Source: TAUS 2016, Dave Landan, Welocalize

Style Scorer Overview

Combines PPL Ratios, Dissimilarity Score + Classification Score

78 StyleScorer	had	-
Help		
Training file(s) directory: //home/dblandan/scratch/train/		Browse.
Test file(a) directory: //home/db/andan/scratch/test/		Browse.
Results file: //home/dblandan/scratch/results.txt		Erperse.
	Score document(0)	Cancel

EN-US	OLH	SCORE
DOCUMENT	SM_MANAGER_TAILO RING	3.98
DOCUMENT	_Marketing_whitep aper_4aa5-7132enw	0.74

Style Scorer: Under the Hood

• Score between 0 and 4, with higher score indicating better style match.

• Dissimilarity

Use character n-gram frequency to generate dissimilarity scores. For each document in the Gold Standard, find its maximum dissimilarity compared with all other documents in the Gold Standard. Let G be the set of Gold Standard documents, and g be a document in G. For each g_i in G, calculate $D_{max}(g_i,G)$. For a document t in the set of Test Documents, calculate $D(g_i,t)$ for all g_i . We want to find the average of the ratio of $D(g_i,t)/D_{max}(g_i,G)$ across all g_i . That average is the dissimilarity score component.

Classification

Using a one-class classifier, return 1 if the Test Document is in the Gold Standard class; otherwise return -1.

• Perplexity

Build a language model from the Gold Standard, and get perplexity score for each document within the Gold Standard to establish PPL_{min}, the theoretical floor for perplexity. For each document in Test Documents, calculate PPL. PPL_{min}/PPL_{Test} will be in the range (0,1].

Why Use Style Scorer?

Source

- Is this really a support document? To what degree is it similar to other support documents, tech doc documents, etc.?
- Dissimilarity can point to worse quality for raw MT and/or reduced post-editing productivity
- ✓ Find supplemental training data

Target

- ✓ Does this target match the style that the client found to be acceptable in the past?
- ✓ Dissimilarity can point to worse quality and reduced post-editing productivity

Source Content Profiler // Part 1

Source Content Profiler: Part 2

- SCP helps you classify a document
- SCP only works on English source

Words per Sentence	
Words per sentence	Occurrence
1	33
2	30
3	31
10+	3
20+	0
20+	0
10+	3

Source Content Profiler: Part 3

SCP Highlights Source Issues on a Segment Level

- ✓ Difficult constructions (e.g. noun phrases)
- ✓ Very short or very long sentences
- ✓ Passive constructions

Productivity Metrics

Segment Level

- Source
- Pre-edit Target
- Post-edit Target
- Time to edit (overall, keystroke, pause)
- Number of visits
- Source word count
- Target word count
- Total character inserted
- PE Distance as %

mixed configuration arrays) house up to 12 DAEs.	opcionales (utilizadas con 3,5 * y arregios combinados de	(utilizadas con arregles de 3,5" y de configuración combinada) contienen hasta 12 GAE.				
	configuración) contienen hasta 12 DAE.					
				a company of the	1 - 1 1 - 1 - 1	Mandle To
Source	Hypothosis	Reference	Lev. D	ist. * PE Dist. (%	of ref. le *	Words

Automatic Scoring

File or Project Level

- BLEU
- Meteor
- GTM
- Precision
- Recall
- TER
- PE Distance as %

BLEU	NIST	METEOR	GTM	Avg. PE	TER	Precision	Recall	Length (Hyp./Ref.)	Segs.	Words
46.90	9.86	62.51	68.86	31.80%	40.71	0.69	0.69	1.01	13797	148862
46.90	9.86	62.51	68.86	31,80%	40.71	0.69	0.69	1.01	73797	748805

Goal

STYLE SCORER (SOURCE) SUITABILIT

SOURCE CONTENT PROFILER

Goal is to find correlation between source, LQA effort required for target and productivity metrics and use data to evangelize changes at the beginning of the content creation cycle.

Next Steps

- Build LMs per domain for English source for Style Scorer
- Build LMs per domain for target languages (tier 1 and subsequently tier 2) for Style Scorer
- Build LMs per domain for English source for Source Content Profiler
- Calculate auto-scoring including PE distance for before_PE, after_PE, after_client_review
- Find how strong the correlation is between all the metrics above
- What can be done to prevent some of the issues?

Thank You!

Proceedings of AMTA 2016, vol. 2: MT Users' Track