

Bootstrapping Arabic-Italian SMT through Comparable Texts and Pivoting

<u>Mauro Cettolo</u>, Nicola Bertoldi & Marcello Federico FBK, Trento - Italy

> EAMT May 30-31, 2011 Leuven, Belgium

Arabic-Italian SMT

EAMT-2011

T-index:

а

combination

of the Internet

population and

its estimated

GDP per capita.

translated.net/

/en/languages-

From www.

that-matter

	Languages	T-Index	Cumulative T-Index	Countries	Internet population	Internet penetration	capita of the Internet Population
1	English	34.8%	34.762%	57 🗉	468,815,773	25.6%	\$40,221
2	Chinese Simplified (!)	11.3%	46. 0 87%	2 🗄	421,097,520	31.5%	\$14,588
з	Japanese	7.0%	53. 050 %	1 🖽	99,143,700	78.4%	\$38,094
4	Spanish	6.8 %	59.888%	21 🗄	138,417,311	33.4%	\$26,798
5	German	5.8%	65.726%	4 🗄	75,325,647	79.2%	\$42, 0 41
6	French	4.5%	70.246%	22 🗉	62,2 0 8,669	18.7%	\$39,413
7	Portuguese	3.5%	73.7 0 8%	7 🗄	78,630,200	31.1%	\$23,888
8	Russian 🖤	3.3%	76.993%	5 🖽	72,331,200	40.9%	\$24,632
9	Arabic ^(!)	2.5%	79.541%	19 🗉	65,041,000	18.5%	\$21,248
10	Korean	2.5%	82. 050 %	2 🖽	39,49 0,000	53.9%	\$34,473
11	Italian	2.4%	84.488%	4 🗄	30,455,560	49.4%	\$43,423
12	Chinese Traditional	1.9%	86.355%	3 🖽	21,289,613	69.2%	\$47,557
13	Dutch	1.6%	87.944%	3 🗄	19,790,120	83.9%	\$43,563
14	Turkish 🕛	1.4%	89.332%	1 🖽	35,000,000	44.4%	\$21,509
15	Farsi (!)	1.1%	90.431%	2 🗄	34,200,000	31.7%	\$17,426
16	Polish	1.1%	91.488%	1 🖽	22,450,600	58.4%	\$25,544
17	Malay (!)	0.70%	92.186%	2 🗉	17,221,500	59.1%	\$21,981

Parallel data are scarce even for socially and economically relevant language pairs

GDP per

Problem

Experimental framework:

- under-resourced language pairs (Arabic-Italian)
- not ready-to-use training data (different nature, comparable texts, ...)

Research directions:

- automatic detection and extraction of parallel texts from the Web
- translation using pivot languages

- New *benchmark* developed by extending two Arabic→English NIST evaluation sets with Italian (and French) translations, from the source language by experts
- Many *direct SMT systems* have been developed:
 - from source to target language (Arabic \rightarrow Italian)
 - from source to pivot languages (Arabic \rightarrow English)
 - from a pivot to target (English \rightarrow Italian)

Methods for *exploitation* of *comparable texts* have been applied

• The *pivot* method known as *composition*, called *transfer* by Wu and Wang (2009), has been experimentally investigated

Benchmark

- a professional translation company was asked to translate the Arabic side into Italian (and French) of the sets provided for the 2009 MT NIST evaluation campaign - Arabic→English task
- one translation per sentence has been produced (i.e. *single reference*)
- the translation from Arabic *avoided* any *bias* towards English

Some statistics (word counts are given in thousands):

cot	-//cont	Arabic		English		French		Italian	
set	#sent. 	W V	V	W	V	W	V	W	V
eval08-NW	813	21.9	7.8	29.1	4.9	33.2	4.9	32.0	5.7
eval09-NW	586	17.5	6.4	23.1	3.9	26.7	4.4	25.1	4.8

|W| = text size |V| = vocabulary size

Comparable corpora for SMT

General Scheme for collecting parallel data from comparable data:

- 1. cluster multilingual documents, by metadata, heuristics, IR ...
- 2. split documents into sentences
- 3. pair sentences across documents, by length, lexical overlap, word alignment ...
- 4. filter sentence or fragment pairs which align very well

Our approach fits this scheme and it is <u>new</u> on some aspects:

- Document pairing
- Mining parallel fragments

Assumptions: documents include a title + baseline MT system

- Methods tested share the translation of titles from the language A into the B:
 - θ : documents paired if titles closer (e.g. wrt PER) than a threshold θ
 - NB: added a constrained translation for feeding a NB classifier
 - IR: indexed B documents are retrieved with translated A titles

Exps on 30K Italian/English docs from EuroNews:

method	%P	%R	$\%F_1$
heta	20.8	16.4	18.4
NB	26.8	25.3	26.0
IR	73.2	73.0	73.1

Mining parallel fragments

Novel method for collecting parallel fragments from comparable documents:

- 1. source document paired to each sentence of the target document
- 2. partial phrase-based alignment between the paired texts
- 3. aligned phrases iteratively merged into blocks on the basis of simple heuristics
- \rightarrow final aligned blocks are the parallel fragments

Exps on ACL WM7	2010 German \rightarrow English tas	k (IWSLT 2010):
-----------------	---------------------------------------	-----------------

baseline	addi	tional	%BLEU
running words	running words	/0DLLU	
	-	-	17.6
2.5M	0.5M	fragments(EN)	18.5
2.3101	0.5M	sentences(EP)	17.9
	2.0M	sentences(EP)	18.3

Direct systems: training data

Arlt-fbk		V	trained
type	ar	it	models
web parallel sent.	1.4M	1.4M	
web parallel frag.	1.8M	1.6M	
total		3.0M	LM
total clean	3.0M	2.8M	TM RM
web monol. sent.		1.06G	LM

Enlt-fbk	V	V	trained
type	en	it	models
web parallel sent.	24.2M	24.1M	
web parallel frag.	2.7M	2.8M	
total		27.0M	LM
total clean	23.3M	23.5M	TM RM
ep5+acquis clean	70.0M	70.0M	TM RM
web monol. sent.		1.06G	LM

ArEn-fbk system developed on data provided for the NIST 2009 evaluation campaign

Direct systems: performance

Performance on the eval09-NW set of the direct systems developed for the translation from Arabic into Italian via pivoting (eval08-NW used for tuning):

avetam id	translation	training data	%BLEU	%BLEU
system id	direction	<pre>#words (source)</pre>	(4 refs)	(1 ref)
Arlt-fbk	ar→it	3.0M	-	13.1
Arlt-ggleTrnslt	ar→n	?	-	19.2
ArEn-fbkNist09		147.2M	54.3	35.3
ArEn-ggleTrnslt	ar→en	?	55.5	33.5
Enlt-fbk	en→it	93M	-	21.0
Enlt-ggleTrnslt	en→n	?	-	19.2

suffix ggleTrnslt = Google Translate - as it was in January 2011

Pivot systems: performance

Performance on the eval09-NW set of the pivot-based systems for the translation from Arabic into Italian:

translation direction	paired s	%BLEU	
	ArEn-fbkNist09	⊗ Enlt-fbk	19.5
ar→it	ArEn-ggleTrnslt	\otimes Enlt-ggleTrnslt	18.2

- our pivoting is effective (19.5 vs. 19.2 by Enlt-ggleTrnslt)
- ggleTrnslt: 19.2 by "direct" vs. 18.2 by "single" composition
 ⇒ this suggests us to further work on our pivot chain from Arabic to Italian,
 e.g. by including more pivot languages (French) and by combining multiple
 systems

Work in progress

- Daily crawling of data from news web sites
- Efficiency in fragment extraction
- Improving direct SMT systems
- Adding French as pivot language for Arabic \rightarrow Italian
- Synthetic and triangulation (open issue: reordering model) pivot translation