Minimum Error Rate Training Semiring

Artem Sokolov & François Yvon

LIMSI-CNRS & LIMSI-CNRS/Univ. Paris Sud {artem.sokolov,francois.yvon}@limsi.fr

EAMT'2011 31 May 2011

Talk Plan

Introduction

- Phrase-based statistical machine translation
- Minimum Error Rate Training
- Contribution
- 2 Semirings
 - Lattice MERT
 - MERT Semiring
- Implementation

4 Experiments

- Setup
- Results

Probability model and inference in SMT system

Probability of translation \mathbf{e} given source sentence \mathbf{f} :

$$p(\mathbf{e}|\mathbf{f}) = Z(\mathbf{f})^{-1} \exp(\bar{\lambda} \cdot \bar{h}(\mathbf{e}, \mathbf{f}))$$

h(**e**, **f**) – feature vector (various compatibility measures of **e** and **f**) *λ* – parameter vector, *λ_i* regulates importance of the feature *h_i*(**e**, **f**)

Translating by MAP-inference:

$$\tilde{\mathbf{e}}_{\mathbf{f}}(\bar{\lambda}) = \operatorname*{arg\,max}_{\mathbf{e}\in E} p(\mathbf{e}|\mathbf{f}) = \operatorname*{arg\,max}_{\mathbf{e}\in E} \bar{\lambda} \cdot \bar{h}(\mathbf{e},\mathbf{f})$$

• E – reachable translations (search space), can be approximated by:

- list of n-best hypotheses
- word lattice

Tuning SMT system with MERT

Given: development set $\{(\mathbf{f}, r_{\mathbf{f}})\}$ (source \mathbf{f} & reference $r_{\mathbf{f}}$ pairs) **Solve:**

$$ar{\lambda}^* = rg\max_{ar{\lambda}} BLEU(\{ ilde{f e}_{f f}(ar{\lambda}, E(ar{\lambda})), r_{f f}\})$$

- BLEU is non-convex and not differentiable, hence heuristics (MERT).
- Search space approximation depends on $\bar{\lambda}$, so iterative tuning:

MERT proceeds in series of optimizations along directions \bar{r} :

$$\bar{\lambda} = \bar{\lambda}_0 + \gamma \bar{r}$$

Optimal translation:

$$\tilde{\mathbf{e}}_{\mathbf{f}}(\gamma) = \operatorname*{arg\,max}_{\mathbf{e}\in E} \bar{\lambda} \cdot \bar{h}(\mathbf{e}, \mathbf{f}) = \operatorname*{arg\,max}_{\mathbf{e}\in E} \underbrace{\bar{\lambda}_0 \cdot \bar{h}(\mathbf{e}, \mathbf{f})}_{\text{intercept}} + \gamma \underbrace{\bar{r} \cdot \bar{h}(\mathbf{e}, \mathbf{f})}_{slope}$$

• each translation hypothesis is associated with a line,

• upper envelope: dominating lines when $\bar{\lambda}$ is moved along \bar{r}

- $\gamma\text{-}\mathrm{projections}$ of intersections give intervals of constant optimal hypothesis
- \bullet optimal γ^* found by merging intervals for $\mathbf{f}\in \mathcal{F}$ and scoring each
- update $\bar{\lambda} = \lambda_0 + \gamma_{i^*}^* \bar{r}_{i^*}$, where i^* is the index of the direction yielding the highest BLEU

MERT problems

- very slow, because of:
 - overall number of iterations folklore: number of iterations \simeq number of dimensions
 - slowness of each iteration (dominated by decoding time)
- non-monotonicity/instability of the training process
- sensitivity of the resulting solutions to initial conditions

Ways to tackle the problems

- improve optimization
 - other target function approximations
 - changes into optimization algorithms
- improve search space processing ← this presentation
 - use lattices (better approximation of the complete search space)
 - reduce search to standard operations (facilitates implementation)
- reduce number of iteration ← this presentation

Contribution

Contribution

- Recast Lattice MERT algorithm of [Macherey et al., 2008] in a semiring framework
 - has already been hinted to in [Dyer et al., 2010]
 - but was never formally described
 - lack of implementation details
- Reimplement MERT using this reformulation
 - and general-purpose FST toolbox OpenFST

Semirings

Semiring $\mathbb{K} = \langle K, \oplus, \otimes, \overline{0}, \overline{1} \rangle$: • $\langle K, \oplus, \overline{0} \rangle$ is a commutative monoid with identity element $\overline{0}$: • $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ • $a \oplus b = b \oplus a$ • $a \oplus \overline{0} = \overline{0} \oplus a = a$

- $\langle {\cal K}, \otimes, \bar{1} \rangle$ is a monoid with identity element $\bar{1}$
- ullet \otimes distributes over \oplus
 - $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
 - $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$
- element 0

 annihilates K

•
$$a \otimes \overline{0} = \overline{0} \otimes a = \overline{0}.$$

Examples

- $\langle \mathbb{R}, +, \times, 0, 1 \rangle$ real semiring
- $\langle S, \Delta, \cap, \emptyset, \cup_i S_i \rangle$ semiring of sets

Lattice MERT

Lattice MERT [Macherey et al., 2008]

source **fr**: Vénus est la jumelle infernale de la Terre target **en**: Venus is Earth's hellish twin

- Decomposability of $\bar{h}(\mathbf{e}, \mathbf{f})$ into a sum of *local* features $h_01, h_02...$
- Envelopes are distributed over nodes in the lattice

Minimum Error Rate Training Semiring

MERT Semiring

$$\mathbb{D}=\langle D,\oplus,\otimes,ar{0},ar{1}
angle$$

Host set:

- a line: $d_y + d_s \cdot x$ (hypothesis)
- set of lines d_i : $d = \{d_{i,y} + d_{i,s} \cdot x\}$ (set of hypotheses)
- set of sets d^k of lines: $D = \left\{ \{ d^k_{i,y} + d^k_{i,s} \cdot x \} \right\}$

Operations \oplus **and** \otimes :

• for
$$d^1, d^2 \in D$$

• $d^1 \oplus d^2 = \text{env}(d^1 \cup d^2)$
• $d^1 \otimes d^2 = \text{env}(\{(d^1_{i,y} + d^2_{j,y}) + (d^1_{i,s} + d^2_{j,s}) \cdot x | \forall d^1_i \in d^1, d^2_j \in d^2\})$
Jnities:

- $\bar{0} = \emptyset$
- $\bar{1} = \{0 + 0 \cdot x\}$

Semiring Operations Illustration

 \otimes -example

$$d^1 \otimes d^2 = \mathsf{env}(\{(d^1_{i.y} + d^2_{j.y}) + (d^1_{i.s} + d^2_{j.s}) \cdot x | \ \forall d^1_i \in d^1, d^2_j \in d^2\})$$

 \oplus -example

 $d^1 \oplus d^2 = \operatorname{env}(d^1 \cup d^2)$

Artem Sokolov & François Yvon (LIMSI)

Minimum Error Rate Training Semiring

EAMT'2011 12 / 18

Shortest Paths for MERT Semiring

Each arc in the FST carries:

- target word a
- vector $\bar{h}(a, \mathbf{f})$ of local features associated with a
- singleton set containing line d with

• slope
$$d_s = (\overline{r} \cdot \overline{h}(a, \mathbf{f}))$$

• y-intercept $d_y = (\bar{\lambda}_0 \cdot \bar{h}(a, \mathbf{f}))$

Weight of a candidate translation path $\mathbf{e} = e_1 \dots e_\ell$:

$$w(\mathbf{e}) = \bigotimes_{i=1}^{\ell} w(e_i) = \{ \overline{\lambda}_0 \cdot \sum_{i=1}^{\ell} \overline{h}(e_i, \mathbf{f}) + (\overline{r} \cdot \sum_{i=1}^{\ell} \overline{h}(e_i, \mathbf{f})) \cdot x \}$$

Upper envelope of all the lines (hypotheses):

$$\operatorname{env}(\bigcup_{\mathbf{e}} w(\mathbf{e})) = \bigoplus_{\mathbf{e}} w(\mathbf{e}) = \bigoplus_{\mathbf{e}} \bigotimes_{i=1}^{\ell(\mathbf{e})} w(e_i).$$

Generic shortest distance algorithms over acyclic graphs calculate this.

Implementation

• Basics: OpenFST toolbox

- works with any semiring
- proven and well optimized ShortestPath algorithms
- other useful algorithms: Union, Determinize, etc.

• Lattice minimization:

- Union of lattices between decoder runs
- Determinize+Minimize to eliminate duplicate hypotheses won't work - MERT semiring is not divisible
- circumvent by performing Union+Determinize over (min, +) semiring

• All directions simultaneously

- weights as arrays of envelopes
- $\bullet~$ 20-30 random direction $\simeq +0.3\text{-}0.5~\text{BLEU}$
- Random restarts help only for the first iteration

Setup

Experiments

Data:

- NewsCommentary (dev: 2051) & WMT10 (dev: 1026), common test
- French to English

FST MERT tuning:

- OpenFST-based multi-threaded implementation
- zero restart points
- axes and additional random directions

Baseline MERT tuning:

- MERT implementation included in MOSES toolkit
- 100-best list, 20 restart points
- Koehn's coordinate descend (only axis directions)

Decoder: *n*-gram phrase-based SMT system N-code¹, 11 features

Artem Sokolov & François Yvon (LIMSI) Minimum Error Rate Training Semiring

¹Demo on http://ncode.limsi.fr/

Experiments

Results

Artem Sokolov & François Yvon (LIMSI)

Minimum Error Rate Training Semiring

Conclusion & Future Work

Conclusion

- Semiring formalization allows using generic FST toolkits to do MERT
- Convergence in less iterations

Future Work

- Better stopping criteria to detect saturation
- Faster \oplus should be most helpful for speed up

Thank you for your attention!

Bibliography

Dyer, C., Lopez, A., Ganitkevitch, J., Weese, J., Ture, F., Blunsom, P., Setiawan, H., Eidelman, V., & Resnik, P. (2010). cdec: A decoder, alignment, and learning framework for finite-state and context-free translation models. In *Proc. of the ACL* (pp. 7–12).

Macherey, W., Och, F. J., Thayer, I., & Uszkoreit, J. (2008). Lattice-based minimum error rate training for statistical machine translation. In *Proc. of the Conf. on EMNLP* (pp. 725–734).