

Using Example-Based MT to Support Statistical MT when **Translating Homogeneous Data in a Resource-Poor** Sandipan Dandapat, Sara Morrissey, Andy Way, Mikel L. Forcada

-011101100010100100111 10010001010101

110001010100

CNGL, School of Computing, DCU

Dublin City University

University College Dublin University of Limerick Trinity College Dublin

Introduction

- Over the past two decades, statistical MT (SMT) has shown very promising results
 - Requires reasonably good amount of parallel corpora
- A large number of languages suffer from the scarcity of large parallel corpora
 - Indic languages, Sign languages etc.
- Some studies have shown SMT approaches have yielded low translation quality for these poorly resourced languages (Islam et al, 2010; Khalilov et al., 2010).

Introduction

- Domain-specific translation to tackle the issue of scarce resources
 - Very low accuracy within SMT framework for homogeneous domain (Dandapat et. al., 2010)
- Can example-based MT (EBMT) techniques help?
 - EBMT approach can be developed using a limited example base (Somers, 2003)
 - EBMT system works well when training and test data are quite close in nature (Marcu, 2001)

Our Attempt

- We adopt two different EBMT approaches for translating homogeneous data in a resource-poor setting
- I. A compiled approach to EBMT
 - Produces translation templates during the training stage (Cicekli and Güvenir, 2001)
- II. A novel way of integrating TM into an EBMT system
 - Using a subsentential TM (extracted using an SMT) system) in the alignment and recombination stages of an **EBMT** system

Structure of the Corpus

- The size and type of corpora is important for adopting a particular data-driven approach to MT
- We use the IWSLT 2009 English—Turkish corpus to deal with less-resourced homogeneous data.
 - The training data is quite small (20k parallel sentences)
 - Corpus is comprised of very similar domain-specific sentences
- 1. (a) Have you ever *seen a* 2. (a) I'd like to *see that camera* Japanese *movie*? on the *shelf*.
 - (b) Have you ever *tried* Japanese *food* ?

(b) I'd like to *have it parted* on the *left*.

Approach I

- Generalized translation-template-based EBMT
 - Learning phase: learn templates from sentence-aligned bitext
 - Decoding phase: translate new sentences using the translation templates

Generalized translation-template-based EBMT

Learning phase - learns templates from bitext by studying similarities and differences between two example pairs (Cicekli and Güvenir, 2001:p. 58)

> I will drink orange juice → portakal suyu içeceğim I will drink coffee → kahve içeceğim

I will drink \rightarrow *içeceğim coffee* \rightarrow *kahve orange juice* \rightarrow *portakal suyu* I will drink $X^{s} \rightarrow X^{T}$ içeceğim X^s orange juice \rightarrow portakal suyu X^{T} X^s coffee \rightarrow kahve X^{T}

We assign a probabilistic score (*p*) to each translation template $T_i : s_i \rightarrow t_i$ $p(t_i | s_i) = count(s_i \rightarrow t_i) / count(s_i)$

X^s orange juice \rightarrow portakal suyu X^T 0.33(p)

Decoding

Approach II

EBMT using subsentential TM

- Matching finds the closest match with the input sentence
- Alignment finds translation of the desired segments
- Recombination combines the translations of the desired segments

Building a Subsentential TM

- We build an auxiliary subsentential TM automatically from the English—Turkish small training corpus
- We use Moses to automatically build this TM
 - Aligned phrase pairs from the Moses phrase table
 - Aligned word pairs based on GIZA++

Entries in TM from Moses phrase table		Entries in TM from word-alignment	
i don't like it	{"sevmedim", "bunu sevmedim"}	helps	{"vücudun", "yardım", "eder"}
i can't sleep well.	{"iyi uyuyamıyorum ."}	coffees	{"kahve"}

DCU

We keep all target equivalents sorted according to phrase translation probability

Matching

- We find *the closest sentence* (s_c) from the example base for *the input sentence* (s) to be translated $s_c = \arg \max \ \text{score}(s, s_i)$
- Edit distance metric to find this closest match sentence $score(s, s_i) = 1 ED(s, s_i) / max(|s|, |s_i|)$
 - s: i'd like a present for my mother.
 - s_c: i'd like a shampoo for greasy hair .

• We consider the associated translation (t_c) of s_c to build the skeleton for the translation of the input sentence s $t_c: yağlı saçlar için bir şampuan istiyorum .$ GREASY HAIR FOR ONE SHAMPOO I'D-LIKE .

Alignment

- We extract the translation of the non-matching fragments of the input sentence (s)
- To do this, we align three sentences the input (s), the closest source-side match (s_c) and its target equivalent (t_c)
 - 1. Mark the mismatched portion between input sentence (s) and the closest source-side match (s_c) using edit distance
 - *s* : i'd like a *<present>* for *<my mother>* .
 - *s_c*: i'd like a *<shampoo>* for *<greasy hair>*.

Alignment

- We extract the translation of the non-matching fragments of the input sentence (s)
- To do this, we align three sentences the input (s), the closest source-side match (s_c) and its target equivalent (t_c)
 - 2. We align the mismatched portion of s_c with its associated translation t_c using our TM
 - s: i'd like a <present> for <my mother>.
 - *s*_c: i'd like a *<shampoo>* for *<greasy hair>*.
 - *t_c* : <1:*yağlı saçlar*> için bir <0:*şampuan*> istiyorum .
- The numbers in angle brackets keep track of the order of the appropriate fragments

Recombination

Substitute, add or delete segments from the input sentence (s) with the translation skeleton (t_c).

s: i'd like a < present> for < my mother>. $s_c: i'd like a < shampoo> for < greasy hair>.$ $t_c: <1: yağlı saçlar> için bir <0: şampuan> istiyorum .$ t(my mother) = ? t(present) = ?

<1: t(*my mother*)> için bir <0: t(*present*)> istiyorum.

- We estimate the $t(\cdot)$ from our subsentential TM.
 - Recursively translating the longest possible matched segment in TM

Experiments

- Baseline SMT (using Moses)
- GEBMT baseline experiment with generalized translation template-based EBMT
- **EBMT** based only on the matching step. Considering closest match target (t_c) as the output
- EBMT_{TM} after obtaining the translation skeleton, unmatched segments are translated using subsentential TM
- English—Turkish data used for experiments
 - Training Data 20k sentences (IWSLT'09 training data)
 - Test Data 414 sentences (IWSLT'09 devset)

Combining the Systems with SMT

- EBMT systems (GEBMT and EBMT_{TM}) sometimes produce correct solutions where SMT fails and vice-versa
- We combine GEBMT and SMT based on the translation score (q) for an input test sentence (s)
 - If the value of q is greater than some threshold we rely on GEBMT(s) otherwise we take the output from SMT(s)
- We call this GEBMT _{score >x} + SMT
- We combine EBMT_{TM} and SMT (EBMT_{TM} + SMT) based on two features
 - Fuzzy match score (FMS)
 - The equality in number of mismatched segments in $s_{,} s_{c}$ and t_{c} (EqUS)
- Rely on $\mathsf{EBMT}_{\mathsf{TM}}$ output depending on these two features

Results

Accuracy obtained with GEBMT system using very small data

Accuracy obtained with GEBMT system with little more data

System	BLEU(%)			
Training Data: 1242 sentences				
SMT	7.63			
GEBMT	6.80			
GEBMT _{score>0.3} +SMT	7.96			
Training Data: 2184 sentences				
SMT	10.72			
GEBMT	07.21			
GEBMT _{score>0.9} +SMT	10.83			
GEBMT _{score>0.8} +SMT	10.99			
GEBMT _{score>0.7} +SMT	10.76			
GEBMT +SMT	1 0.5 5			

Results

	System		BLEU(%)	
Accuracy obtained with	Training Data: 19,922 sentences			
	SMT		23.59	
EBMT _{TM} system	EBMT		15.60	
	EBMT _{TM}		20.08	
	System: EBMT _{TM} + SMT			
	Condition	time/percentage EBMT _™ used	BLEU(%)	
Accuracy obtained with	FMS >0.85	35 (8.5%)	24.22	
	FMS >0.8	114 (27.5%)	23.99	
EBMT _{TM} + SMT system	FMS >0.7	197 (47.6%)	22.74	
	FMS >0.85 & EqUS	24 (5.8%)	24.41	
	FMS >0.8 & EqUS	76 (18.4%)	24.19	
	FMS >0.7 & EqUS	127 (30.7%)	24.08	
		DEU		

Assessment of Error Types

- Incorrect alignment in matching phase
 - Due to erroneous TUs in the subsentential TM
 - s: i have a terrible < headache> .
 - s_c : i have a terrible <*cough*>.
 - t_c : berbat bir öksürüğüm var.
 - $\texttt{cough} \rightarrow \{\texttt{``oksuruk''}, \texttt{``oksuruk tedavisi için''} \texttt{ in TM}$
 - t': berbat bir öksürüğüm var baş ağrısı.
- Incorrect translation produced during decoding
 - Mostly when falling back to word-based translation
- Incorrect morpho-syntactic alignment
 - s: do you have a japanese <guidebook>?
 s_c: do you have a japanese <magazine>?
 t_c: japonca bir <0: derginiz> var mı ?
 - t': japonca bir rehber kitap var mı?

Observations

• Effect of training data size in $EBMT_{TM}$ system

Observations

- GEBMT system has lower accuracy on its own compared to baseline SMT
- Combining GEBMT with SMT has some improvement over SMT
 - relative BLEU improvement of 4.3% with 1242 sentences; less (2.5% relative BLEU) with 2184 sentences
- EBMT_{TM} system has higher score than baseline when the amount of data is small
- With increased data size, SMT performs better compared to EBMT_{TM} system
- Combing EBMT_{TM} and SMT using FMS and EqUS shows improvement over the baseline SMT

Conclusion

- EBMT works better for certain sentences when the amount of available resources is limited
- Combining EBMT and SMT may be expected to yield a higher score than an individual system
- Integration of subsentential TM with EBMT improves translation quality

Future Work

- In order to test the scalability, we plan to use larger training and test data
- We intend to find more sophisticated features (other than FMS and EqUS) to trigger the use of EBMT system

Thank You

Questions?

