Constrained Recombination in an Example-based Machine Translation System

Monica Gavrila

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences

EAMT (Research Paper) 29.05.2011

Contents

- 1 The Framework
- 2 MT Systems
- 3 Experiments
- 4 Conclusions

Framework

Example-based Machine Translation

- Translation by analogy (Nagao, 1984).
- A (small) parallel aligned corpus is enough: database of examples.
- Three steps: matching, alignment and recombination.
- Several Approaches: linear, template-based, hybrid etc.

Template: (...) gave (...) $up \leftrightarrow (...)$ a abandonat (...)

- Languages: Romanian, German, English
- Romanian as under-resourced language

Contents

- 1 The Framework
- 2 MT Systems
- 3 Experiments
- 4 Conclusions

The Implemented MT Systems

- \bullet Lin EBMT
 - The EBMT baseline system
 - A linear EBMT system
- $2 Lin EBMT^{REC+}$
 - Extends Lin EBMT
 - Hybrid system (linear + template-based)
 - Word-order constraints are used in the recombination step. The constraints are extracted from templates.

Lin - EBMT Matching

- Recursive approach
- Based on surface-forms
- Based on the longest common subsequence (LCS) algorithm (Bergroth et al, 2000)
- A token-index is used to reduce the matching space.

LCS Similarity (LCSS)

Given two strings - s1 and s2 - the LCSS measure is calculated as

$$LCSS(s1, s2) = LCSS_T(s1, s2) - P * noTG, \qquad (1)$$

where

$$LCSS_T(s1, s2) = \frac{Length(LCS(s1, s2))}{Length(s1)},$$
 (2)

Conclusions

Experiments

Example

Input s1 = "Saving names and phone numbers (Add name)"

Sentence in the corpus s2 = "Erasing names and numbers"

LCS(s1, s2) = "names and numbers"

$$LCSS(s1, s2) = \frac{3}{9} - 0.01 * 1 = 0.323.$$

Lin - EBMT: Alignment

• Uses GIZA++ results and the longest TL aligned subsequence are used

LCS: "technical regulations standards" Alignments

- ngiiments
- "technical tehnice" (position 8 in TL),
- "regulations reglementările" (position 7 in TL) and
- "standards standarde" (position 23 in TL)

We use further the sequences: "reglementările tehnice" and "standarde".

Lin - EBMT: Recombination

- Input the "the bag of word sequences" $\{w_1, w_2, ..., w_n\}$ provided by the alignment step
- The result is the needed translation.
- Uses a "recombination matrix"

Let A = a(i, j) be the "recombination matrix". If the outcome of the alignment is n word-sequences $\{w_1, w_2, ..., w_n\}$ w_n which form the output and are not necessarily different, with $w_i = w_{i_1} w_{i_2} ... w_{i_{last}}$, then A is a square matrix of order n that is defined as follows:

$$A = \begin{cases} -3, & \text{if } i = j; \\ -2, & \text{if } i <> j, \\ & w_{i_{last}} w_{j_1} \text{ is } \\ & \text{not in the } \end{cases}$$

$$\frac{2*count(w_{i_{last}} w_{j_1})}{count(w_{i_{last}}) + count(w_{j_1})}, \text{ else.}$$

$$(3)$$

Experiments

	w1	w2	 wi	 wj	 wn
w1	-	3 a(1,2)	 a(1,i)	 a(1,j)	 a(1,n)
w2	a(2,1)	-3	 a(2,i)	 a(2,j)	 a(2,n)
wi	a(i,1)	a(i,2)	 -3	 a(i,j)	 a(i,n)

wj	a(j,1)	a(j,2)	 a(j,i)	 -3	 a(j,n)
wn	a(n,1)	a(n,2)	 a(n,i)	 a(n,j)	 -3

	w1	w2	 wi	 wj	 wn
w1	-3	a(1,2)	 a(1,i)	 a(1,j)	 a(1,n)
w2	a(2,1)	-3	 a(2,i)	 a(2,j)	 a(2,n)
wi	a(i,1)	a(i,2)	 -3	 a(i,j)	 a(i,n)
wj	a(j,1)	a(j,2)	 a(j,i)	 -3	 a(j,n)
wn	a(n,1)	a(n,2)	 a(n,i)	 a(n,j)	 -3

Conclusions

The Recombination Matrix - 2

	w1	w2	 wi	 wj	 wn
w1	-3	a(1,2)	 a(1,i)	 a(1,j)	 a(1,n)
w2	a(2,1)	-3	 a(2,i)	 a(2,j)	 a(2,n)
			 	 222	 222
wi	a(i,1)	a(i,2)	 -3	 a(i,j)	 a(i,n)
wj	a(j,1)	a(j,2)	 a(j,i)	 -3	 a(j,n)
wn	a(n,1)	a(n,2)	 a(n,i)	 a(n,j)	 -3

	w1	w2	 wi		wj	 wn
w1	-3	a(1,2)	 a(1,i)		a(1,j)	 a(1,n)
w2	a(2,1)	-3	 a(2,i)		a(2,j)	 a(2,n)
			 200		200	
wiwj	a(j,1)	a(j,2)	 a(j,i)	***	-3	 a(j,n)
			 1000			 ***
wn	a(n,1)	a(n,2)	 a(n,i)		a(n,j)	 -

	w1	w2	 wi	 wj	 wn
w1	-3	a(1,2)	 a(1,i)	 a(1,j)	 a(1,n)
w2	a(2,1)	-3	 a(2,i)	 a(2,j)	 a(2,n)
wiwj	a(j,1)	a(j,2)	 a(j,i)	 -3	 a(j,n)
			 ***	 ***	
wn	a(n,1)	a(n,2)	 a(n,i)	 a(n,j)	 -3

w1	w2		wiwj		wn
- 4	3 a(1,2)		a(1,j)	•••	a(1,n)
a(2,1)	-3		a(2,j)		a(2,n)
					1552
a(j,1)	a(j,2)	•••	-3		a(j,n)
			****	•••	
a(n,1)	a(n,2)		a(n,j)		-3
	a(2,1) a(j,1)	-3 a(1,2) a(2,1) -3 a(j,1) a(j,2)	-3 a(1,2) a(2,1) -3 a(j,1) a(j,2)	-3 a(1,2) a(1,j) a(2,1) -3 a(2,j) a(j,1) a(j,2)3	-3 a(1,2) a(1,j) a(2,j) a(j,1) a(j,2)

	w1	w2		wiwj		wn
w1	-3	a(1,2)		a(1,j)		a(1,n)
w2	a(2,1)	-3	•••	a(2,j)		a(2,n)
wiwj	a(j,1)	a(j,2)		-3		a(j,n)
		•••	•••		•••	***
wn	a(n,1)	a(n,2)		a(n,j)		-3

The Framework

- Motivation: use the information which is lost in the recombination step of Lin EBMT;
- Mixture of linear and template-based approach;
- Matching and alignment remain as in Lin EBMT;
- Constraints are set on the values from the recombination matrix, by using information extracted from templates.

Conclusions

The Framework MT Systems Experiments Conclusions

Template Extraction

$$((TF_{SL})^*(VAR_{SL})^*)^*TF_{SL}((TF_{SL})^*(VAR_{SL})^*)^* \leftrightarrow ((TF_{TL})^*(VAR_{TL})^*)^*$$

Template-Example

The input

press and hold clear to delete the characters more quickly.

Matched sentence and alignment

pentru a sterge simultan toate caracterele cand scrieti un mesaj , apasati optiuni si selectati stergeti textul . to delete all the characters at once when writing a message press options and select clear text .

Template-Example

The input

 $press\ and\ hold\ clear\ to\ delete\ the\ characters\ more\ quickly\ .$

Template

```
to&&1&& delete&&2&& VAR3 the&&4&& characters&&5&& VAR6 NOALIGN7 VAR8_18
.&&19&& \rightarrow pentru&&1&& a&&1&& sterge&&2&& VAR6 VAR3 caracterele&&5&& VAR8_18 .&&19&&
```

Constraints

- 1 The First-Word-Constraint (C.1): A constraint C.1 refers to the first word of the output.
- 2 TLSide-Template-Constraint (C.2): the C.2 constraints are deduced only from the TL side of each of the templates extracted.
- **3** Whole-Template-Constraint (C.3): the C.3 constraints are extracted considering each of the templates, together with the input sentence, and the alignment information.

The result: a set $C = \{(word_i, word_j)\}$ of constraints: The sequence $word_i word_j$ is not allowed.

C.1 Constraints

The input

to delete the characters more quickly press and hold clear.

Template

```
to&&1&& delete&&2&& VAR3 the&&4&& characters&&5&& VAR6 NOALIGN7 VAR8_18 .&&19&& characters&&1&& sterge&&2&& VAR6 VAR3 caracterele&&5&& VAR8_18 .&&19&&
```

C.2 Constraints

Template

to&&1&& delete&&2&& VAR3 the&&4&& characters&&5&& VAR6 NOALIGN7 VAR8_18 .&&19&& caracterele&&5&& VAR8 18 .&&19&&

New Recombination Matrix

$$A = \begin{cases}
-3, & \text{if } i = j; \\
-2, & \text{if } i <> j, \\
 & w_{i_{last}} w_{j_1} \text{ is not in } \\
 & \text{the corpus or } \\
 & (w_{i_{last}} w_{j_1}) \in C; \\
 & \frac{2*count(w_{i_{last}} w_{j_1})}{count(w_{i_{last}}) + count(w_{j_1})}, & \text{else.}
\end{cases}$$

$$(4)$$

Another Recombination Matrix

$$A = \begin{cases} -3, & \text{if } i = j; \\ -1, & \text{if } i <> j, \\ & w_{i_{last}} w_{j_1} \text{ is not in } \\ & \text{the corpus;} \\ -2, & (w_{i_{last}} w_{j_1}) \in C; \\ \frac{2*count(w_{i_{last}} w_{j_1})}{count(w_{i_{last}}) + count(w_{j_1})}, & \text{else.} \end{cases}$$

$$(5)$$

- 1 The Framework
- 2 MT Systems
- 3 Experiments
- 4 Conclusions

The Experimental Settings

- 2 EBMT systems: Lin EBMT, $Lin EBMT^{REC+}$
- 2 language pairs, both directions of translations: English-Romanian, German-Romanian
- 1 corpus: RoGER

The Corpus: RoGER

- Developed between 2005 and 2006, at the University of Hamburg, NatS, together with Natalia Elita
- Romanian, German, English, Russian
- Manual of an electronic device
- 2333 sentences, between 25K and 27K words
- Manually verified
- No diacritics, some data replaced with meta-notations

Experimental Setting

- Training: 2200 sentences, approx 27 K items, 13 words the average sentence length
- Test: 133 sentences, approx 1.6 K items, 12.3 words the average sentence length

BLEU (Papineni et al., 2002) Scores

Evaluation

Best Score Differences:

- English-Romanian: 0.0088
- Romanian-English: 0.0115
- German-Romanian: 0.0039
- Romanian-German: 0.0027

Contents

- 1 The Framework
- 2 MT Systems
- 3 Experiments
- 4 Conclusions

Conclusions

Conclusions & Further Work

• Impact of word-order constraints

Further work:

- Additional constraints;
- Priorities for the constraints are used (weighting);
- Different corpus and languages;
- Manual analysis of the data;
- N-grams of several lengths etc.

Discussions

Thank you for your attention!

Suggestions \dots Questions \dots