

Theoretical and Methodological Issues in MT (TMI), Skövde, Sweden, Sep. 7-9, 2007

Statistical MT from TMI-1988 to TMI-2007: What has happened?

Hermann Ney E. Matusov, A. Mauser, D. Vilar, R. Zens

Human Language Technology and Pattern Recognition Computer Science Department RWTH Aachen University D-52056 Aachen, Germany

Contents

1	History	3
2	EU Project TC-Star (2004-2007)	9
3	Statistical MT3.1Training	23 28
4	 Recent Extensions 4.1 System Combination 4.2 Gappy Phrases 4.3 Statistical MT With No/Scarce Resources 	44 45 51 58

1 History

use of statistics has been controversial in NLP:

• Chomsky 1969:

... the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term.

• was considered to be true by most experts in NLP and AI

Statistics and NLP: Myths and Dogmas

short (and simplified) history:

- 1949 Shannon/Weaver: statistical (=information theoretic) approach
- 1950–1970 empirical/statistical approaches to NLP ('empiricism')
- 1969 Chomsky: ban on statistics in NLP
- 1970-? hype of AI and rule-based approaches
- 1988 TMI: Brown presents IBM's statistical approach
- 1988–1995 statistical translation at IBM Research:
 - corpus: Canadian Hansards: English/French parliamentary debates
 - DARPA evaluation in 1994: comparable to 'conventional' approaches (Systran)
- 1992 TMI: Empiricist vs. Rationalist Methods in MT controversial panel discussion (?)

After IBM: 1995 - ...

limited domain:

- speech translation: travelling, appointment scheduling,...
- projects:
 - Verbmobil (German)
 - EU projects: Eutrans, PF-Star

'unlimited' domain:

- DARPA TIDES 2001-04: written text (newswire): Arabic/Chinese to English
- EU TC-Star 2004-07: speech-to-speech translation
- DARPA GALE 2005-07+:
 - Arabic/Chinese to English
 - speech and text
 - ASR, MT and information extraction
 - measure: HTER (= human translation error rate)

Verbmobil 1993-2000

German national project:

– general effort in 1993-2000: about 100 scientists per year

– statistical MT in 1996-2000: 5 scientists per year

task:

- input: SPOKEN language for restricted domain: appointment scheduling, travelling, tourism information, ...
- vocabulary size: about 10 000 words (=full forms)
- competing approaches and systems
 - end-to-end evaluation in June 2000 (U Hamburg)
 - human evaluation (blind): is sentence approx. correct: yes/no?

• overall result: statistical MT highly competitive

similar results for European projects:

Eutrans (1998-2000) and PF-Star (2001-2004)

6

Translation Method	Error [%]
Semantic Transfer	62
Dialog Act Based	60
Example Based	51
Statistical	29

ingredients of the statistical approach:

- Bayes decision rule:
 - minimizes the decision errors
 - consistent and holistic criterion
- probabilistic dependencies:
 - toolbox of statistics
 - problem-specific models (in lieu of 'big tables')
- learning from examples:
 - statistical estimation and machine learning
 - suitable training criteria

approach:

statistical MT = structural (linguistic?) modelling + statistical decision/estimation

Analogy: ASR and Statistical MT

Klatt in 1980 about the principles of DRAGON and HARPY (1976); p. 261/2 in 'Lea, W. (1980): Trends in Speech Recognition':

"...the application of simple structured models to speech recognition. It might seem to someone versed in the intricacies of phonology and the acoustic-phonetic characteristics of speech that a search of a graph of expected acoustic segments is a naive and foolish technique to use to decode a sentence. In fact such a graph and search strategy (and probably a number of other simple models) can be constructed and made to work very well indeed if the proper acoustic-phonetic details are embodied in the structure".

my adaption to statistical MT:

"...the application of simple structured models to machine translation. It might seem to someone versed in the intricacies of morphology and the syntactic-semantic characteristics of language that a search of a graph of expected sentence fragments is a naive and foolish technique to use to translate a sentence. In fact such a graph and search strategy (and probably a number of other simple models) can be constructed and made to work very well indeed if the proper syntactic-semantic details are embodied in the structure".

March 2007: state-of-the-art for speech/language translation

domain: speeches given in the European Parliament

- work on a real-life task:
 - 'unlimited' domain
 - large vocabulary
- speech input:
 - cope with disfluencies
 - handle recognition errors
- sentence segmentation
- reasonable performance

characteristic features of TC-Star:

- full chain of core technologies: ASR, SLT(=MT), TTS and their interactions
- unlimited domain and real-life world task: primary domain: speeches in European Parliament
- periodic evaluations of all core technologies

TC-Star: Approaches to MT (IBM, IRST, LIMSI, RWTH, UKA, UPC)

- phrase-based approaches and extensions
 - extraction of phrase pairs, weighted FST, ...
 - estimation of phrase table probabilities
- improved alignment methods
- log-linear combination of models (scoring of competing hypotheses)
- use of morphosyntax (verb forms, numerus, noun/adjective,...)
- language modelling (neural net, sentence level, ...)
- word and phrase re-ordering (local re-ordering, shallow parsing, MaxEnt for phrases)
- generation (search): efficiency is crucial

- system combination for MT
 - generate improved output from several MT engines
 - problem: word re-ordering
- interface ASR-MT:
 - effect of word recognition errors
 - pass on ambiguities of ASR
 - sentence segmentation

more details: webpage + papers

three types of input to translation:

- ASR: (erroneous) recognizer output
- verbatim: correct transcription
- text: final text edition (after removing effects of spoken language: false starts, hesitations, ...)

best results (system	combination) of evaluation 2007:
----------------------	----------------------------------

Input	BLEU [%]	PER [%]	WER [%]
ASR (WER $= 5.9\%$)	44.8	30.4	43.1
Verbatim	53.5	25.8	35.5
Text	53.6	26.7	37.2

$E \rightarrow S$ 2007: Human vs. Automatic Evaluation

observations:

- good performance:
 - BLEU: close to 50%
 - PER: close to 30%
- fairly good correlation between adequacy/fluency (human) and BLEU (automatic)
- degradation:

from text to verbatim: none or small from verbatim to ASR: \triangle PER corresponds to ASR errors

four key components in building today's MT systems:

- training: word alignment and probabilistic lexicon of (source,target) word pairs
- phrase extraction: find (source,target) fragments (='phrases') in bilingual training corpus
- log-linear model: combine various types of dependencies between F and E
- generation (search, decoding): generate most likely (='plausible') target sentence

ASR: some similar components (not all!)

3 Statistical MT

starting point: probabilistic models in Bayes decision rule:

$$F
ightarrow \hat{E}(F) \ = \ rg\max_{E} \left\{ p(E|F)
ight\} \ = \ rg\max_{E} \left\{ p(E) \cdot p(F|E)
ight\}$$

- 3.1 Training
 - distributions p(E) and p(F|E):
 - are unknown and must be learned
 - complex: distribution over strings of symbols
 - using them directly is not possible (sparse data problem)!
 - therefore: introduce (simple) structures by decomposition into smaller 'units'
 - that are easier to learn
 - and hopefully capture some true dependencies in the data
 - example: ALIGNMENTS of words and positions: bilingual correspondences between words (rather than sentences) (counteracts sparse data and supports generalization capabilities)

Example of Alignment (Canadian Hansards)

standard procedure:

- sequence of IBM-1,...,IBM-5 and HMM models: (conferences before 2000; Comp.Ling.2003+2004)
- EM algorithm (and its approximations)
- implementation in GIZA++

remarks on training:

- \bullet based on single word lexica p(f|e) and p(e|f); no context dependency
- simplifications: only IBM-1 and HMM

alternative concept for alignment (and generation): ITG approach [Wu ACL 1995/6]

speech recognition	text translation
$Pr(x_1^T T,w) = $	$Pr(f_1^J J, e_1^I) =$
$\sum\limits_{s_1^T} \prod\limits_t \; [p(s_t s_{t-1},S_w,w) \; p(x_t s_t,w)]$	$\sum\limits_{a_1^J}\prod\limits_j \; [p(a_j a_{j-1},I) \; p(f_j e_{a_j})]$
time $t = 1,, T$	source positions $j=1,,J$
observations x_1^T	observations f_1^J
with acoustic vectors x_t	with source words f_j
states $s=1,,S_w$	target positions $i=1,,I$
of word w	with target words e_1^I
path: $t \rightarrow s = s_t$	alignment: $j ightarrow i = a_j$
always: monotonous	partially monotonous
transition prob. $p(s_t s_{t-1}, S_w, w)$ emission prob. $p(x_t s_t, w)$	alignment prob. $p(a_j a_{j-1},I)$ lexicon prob. $p(f_j e_{a_j})$

RWTH

3.2 Phrase Extraction

S T A R

segmentation into two-dim. 'blocks'

blocks have to be "consistent" with the word alignment:

- words within the phrase cannot be aligned to words outside the phrase
- unaligned words are attached to adjacent phrases

purpose: decomposition of a sentence pair (F, E)into phrase pairs $(\tilde{f}_k, \tilde{e}_k), k = 1, ..., K$:

$$p(E|F) \;=\; p(ilde{e}_{1}^{K}| ilde{f}_{1}^{K}) \;=\; \prod_{k} p(ilde{e}_{k}| ilde{f}_{k})$$

possible phrase pairs:

impossible phrase pairs:

RWTH

Example: Alignments for Phrase Extractionsource sentence我很高兴和你在一起.gloss notationIVERY HAPPY WITH YOU AT TOGETHER.target sentenceI enjoyed my stay with you.

Viterbi alignment for $F \rightarrow E$:

Example: Alignments for Phrase Extraction

Alignments for Phrase Extraction

most alignment models are asymmetric: $F \rightarrow E$ and $E \rightarrow F$ will give different results

in practice: combine both directions using a simple heuristic

- *intersection*: only use alignments where both directions agree
- *union*: use all alignments from both directions
- *refined*: start from *intersection* and include adjacent alignments from each direction

effect on number of extracted phrases and on translation quality (IWSLT 2005)

heuristic	# phrases	BLEU[%]	TER[%]	WER[%]	PER[%]
union	489 035	49.5	36.4	38.9	29.2
refined	1 055 455	54.1	34.9	36.8	28.9
intersection	3 582 891	56.0	34.3	35.7	29.2

3.3 Phrase Models and Log-Linear Scoring

combination of various types of dependencies using log-linear framework (maximum entropy):

$$p(E|F) \, = \, rac{\expig[\sum_m \lambda_m h_m(E,F)ig]}{\sum_{ ilde{E}} \expig[\sum_m \lambda_m h_m(ilde{E},F)ig]}$$

with 'models' (feature functions) $h_m(E,F), m = 1,...,M$

Bayes decision rule:

$$egin{aligned} F & o \ \hat{E}(F) \ = \ rgmax_E \left\{ p(E|F)
ight\} \ = \ rgmax_E \left\{ \exp \left[\sum_m \lambda_m h_m(E,F)
ight]
ight\} \ & = \ rgmax_E \left\{ \sum_m \lambda_m h_m(E,F)
ight\} \end{aligned}$$

consequence:

- do not worry about normalization
- include additional 'feature functions' by checking BLEU ('trial and error')

Phrase Model Scoring

most models $h_m(E,F)$ are based on segmentation into two-dim. 'blocks' k := 1,...,K

five baseline models:

- phrase lexicon in both directions:
 - $p(ilde{f}_k| ilde{e}_k)$ and $p(ilde{e}_k| ilde{f}_k)$
 - estimation: relative frequencies
- single-word lexicon in both directions:
 - $p(f_j| ilde{e}_k)$ and $p(e_i| ilde{f}_k)$
 - model: IBM-1 across phrase
 - estimation: relative frequencies
- monolingual (fourgram) LM

7 free parameters: 5 exponents + phrase/word penalty

history:

- Och et al.; EMNLP 1999:
 - alignment templates ('with alignment information')
 - and comparison with single-word based approach
- Zens et al., 2002: German Conference on Al, Springer 2002; phrase models used by many groups (Och → ISI/Koehn/...)

later extensions, mainly for rescoring N-best lists:

- phrase count model
- ullet IBM-1 $p(f_j|e_1^I)$
- deletion model
- word n-gram posteriors
- sentence length posterior

		BLEU[%]	
Search	Model	Dev	Test
monotone	4-gram LM + phrase model $p(ilde{f} ilde{e})$	31.9	29.5
	+ word penalty	32.0	30.7
	+ inverse phrase model $p(ilde{e} ilde{f})$	33.4	31.4
	+ phrase penalty	34.0	31.6
	+ inverse word model $p(e ilde{f})$ (noisy-or)	35.4	33.8
non-monotone	+ distance-based reordering	37.6	35.6
	+ phrase orientation model	38.8	37.3
	+ 6-gram LM (instead of 4-gram)	39.2	37.8

Dev: NIST'02 eval set; Test: combined NIST'03-NIST'05 eval sets

soft constraints ('scores'):

- distance-based reordering model
- phrase orientation model

hard constraints (to reduce search complexity):

- level of source words:
 - local re-ordering
 - IBM (forward) constraints
 - IBM backward constraints
- level of source phrases:
 - IBM constraints (e.g. #skip=2)
 - side track: ITG constraints

Phrase Orientation Model

Re-ordering Constraints

dependence on specific language pairs:

- German English
- Spanish English
- French English
- Japanese English (BTEC)
- Chinese English
- Arabic English

3.4 Generation

constraints: no empty phrases, no gaps and no overlaps

operations with interdependencies:

- find segment boundaries
- allow re-ordering in target language
- find most 'plausible' sentence

similar to: memory-based and example-based translation

search strategies: (Tillmann et al.: Coling 2000, Comp.Ling. 2003; Ueffing et al. EMNLP 2002)

Travelling Salesman Problem: Redraw Network (J=6)

Reordering: IBM Constraints

extensions:

- phrases rather than words
- rest cost estimate for uncovered positions

input: source language string $f_1...f_j...f_J$ for each cardinality c = 1, 2, ..., J do for each set $C \subset \{1, ..., J\}$ of covered positions with |C| = c do for each target suffix string \tilde{e} do - evaluate score $Q(C, \tilde{e}) := ...$ - apply beam pruning

traceback:

- recover optimal word sequence

dynamic programming beam search:

- build up hypotheses of increasing cardinality: each hypothesis (C, \tilde{e}) has two parts: coverage hyp. (C) + lexical hyp. (\tilde{e})
- consider and prune competing hypotheses:
 - with the same coverage vector
 - with the same cardinality
 - additional: observation pruning

How does the translation accuracy depend on the length of the 'matching' phrases?

experimental analysis:

- measure BLEU separately for each sentence
- curve:

plot BLEU vs. average length of matching phrases

experimental results:

phrase length $1 \rightarrow 3$: BLEU from 20% to 40%

memory effect:

- more and longer matching phrases: help improve translation accuracy
- today's SMT is closer to example/memory-based MT than 10 years ago

most important difference to example/memory-based MT:

- consistent scoring (handles weak interdependencies and conflicting requirements)
- fully automatic training (starting from a sentence-aligned bilingual corpus)

4 Recent Extensions

- system combination
- gappy phrases
- statistical MT without data?

concept for combining translations from several MT engines:

- align the system outputs: non-monotone alignment (as in training)
- construct a confusion network from the aligned hypotheses
- use weights and language model to select the best translation
- use of 'adapted' language model: adaptation to translated test sentences
- 10-best lists of each individual system as input

first work presented at EACL 2006; (similar approaches in GALE)

Build Confusion Network

Example:

	0.25 would your like coffee or tea
(1+3) system	0.35 have you tea or coffee
hypotheses	0.10 would like your coffee or
with weights	0.30 I have some coffee tea would you like
alignment	have would you your \$ like coffee coffee or or tea tea
and	would would your your like like coffee or or \$ tea
re-ordering	I \$ would would you your like like have \$ some \$ coffee coffee \$ or tea tea

introduce confidence factors for each system and "vote"

confusion network	\$ \$ 	would have would would	your you your you	like \$ like like	\$ \$ \$ have	\$ \$ \$ some	coffee coffee coffee coffee	or or or \$	tea tea \$ tea
voting		would/0.65 have/0.35				\$/ 0.7 some/0.3	coffee/ 1.0	or/0.7 \$/0.3	tea/ 0.9 \$/ 0.1

- refinements:
 - use each system output as primary reference (combine several confusion networks)
 - include language model

combination of 5 MT systems developed for the GALE 2007 evaluation (Arabic NIST05, case-insensitive):

	PER [%]	BLEU [%]	TER [%]
worst system	33.9	44.2	47.4
best system	28.4	55.3	38.9
combination	27.7	57.1	36.8

- often: improvements, in particular for ERROR measures (like PER)
- word re-ordering and alignment: sentence structure is not always preserved
- "adapted" language model gives a bonus to *n*-grams present in the original phrases
- question: What is the human performance?

Effect of individual system combination components: (TC-STAR 2007 evaluation data, English-to-Spanish, verbatim condition)

	BLEU[%]	WER[%]	PER[%]	NIST
worst single system	49.3	39.8	30.0	9.95
best single system	52.4	36.7	27.9	10.45
 system combination: single confusion net (uniform weights) + manual weight + union of all confusion nets + adapted LM + automatic weight optimization 	53.0 53.4 53.8 54.3 54.5	35.3 35.5 35.6 35.2 35.5	27.1 27.0 26.8 27.4 27.5	10.60 10.62 10.60 10.65 10.62

Shortcomings of Present MT Rover

Task: TC-STAR 2006 Spanish-to-English evaluation data, 300 sentences

"Human MT Rover": human experts generate the output sentence.

System	BLEU[%]	WER[%]	PER[%]	NIST
worst single system	52.0	35.8	27.2	9.33
best single system	54.1	34.2	25.5	9.47
system combination	55.2	32.9	25.1	9.63
"human" system combination	58.2	31.5	24.3	9.85

result: room for improvement:

- BLEU: from 54.1% to 58.2% (human) vs. 55.2% (automatic)
- both for lexical choices (PER) and word order

concept:

- allow for gaps in the phrase pairs
- effect: long-distance dependencies

history:

- McTait & Trujillo 1999: discontiguous translation patterns
- U. Block 2000 (Verbmobil): (translation) pattern pairs
- R. Zens: diploma thesis 2002, RWTH Aachen (unpublished)
- D. Chiang 2005: hierarchical phrases

so far: (source, target) phrase pairs (α, β) without gaps:

p(eta|lpha)

discontiguous phrase pairs $(\alpha_1 A \alpha_2, \beta_1 B \beta_2)$ WITH gaps (A, B):

 $p(eta_1 B eta_2 | lpha_1 A lpha_2) \,=\, p(A|B) \cdot p(eta_1 eta_2 | lpha_1 eta_2)$

٠	•	•	•	•	•	٠	•	٠	•	•	•	•	٠	٠	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	•
•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	٠	•	٠
•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠
•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	• 	•	•	•	• 	•	•	•	•	•	•
•	•	٠	٠	٠	•	•	•	•	• 	•	•	•	• 	•	•	-	٠	٠	•
•	•	•	•	•	•	•	•	•	• 	•	•	•	• 	•	•	•	•	•	•
•	•	•	•	•	•	•	• •	•	 	 •	• •	 •	 	•	•	-	•	•	•
•	•	•	•	•	•	•		•		•	•	•	 •	•	•		•	•	•
•	•	•	•	•	•	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	٠	•	٠	•	٠	٠	٠	•	٠	٠	٠

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	• 	•	•	• 	•	• 	•	•	•	•	•
•	•	•	•	•	•	•	•	• -	• 		•			• 	•	-	•	•	•
•	•	•	•	•	•			•	 	•	•			 •	•	-	•	•	•
•	•	•	•	•	•	-		<u> </u>	' • 	•	•	└ ●	•	! !	•	-	•	•	•
•	•	•	•	•	•	•	•	' ● + —	' • 	•	•	' ● ⊢ —	•	' • 	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

ongoing work:

- heuristics for gappy phrase extraction
- scoring of phrase models
- generation (search): top-down vs. bottom-up, efficiency,...

IWSLT 2007, Chinese-to-English task

System	BLEU	TER	WER	PER
mono.PBT	29.6	56.0	58.3	48.9
best PBT	37.2	48.0	48.7	44.3
gappy PBT	35.0	50.5	51.3	46.4

Examples:

	Please tell me how to get there.
gappy PBT	Do you have any cancellation, please let me know.
Reference	If there is a cancellation, please let me know.

best PBT	Take me to a hospital?
gappy PBT	What should I take to go to the hospital?
Reference	What should I take with me to the hospital?

4.3 Statistical MT With No/Scarce Resources

two aspects of statistical MT:

• decision process (from source F to target E):

$$\hat{E} = rg\max_{E} \{ p(E) \cdot p(F|E) \}$$

58

- learning the probability models:
 - language model p(E): monolingual corpus
 - lexicon/translation model p(F|E): bilingual corpus

idea:

- bilingual corpus: sometimes difficult to get
- substitute: conventional bilingual dictionary (and use uniform prob. distributions)

consequence: morphology and morphosyntax helpful (all SMT systems use full-form words!)

Spanish→English	WER	PER	BLEU	OOVs
dictionary	60.4	49.3	19.4	20.7
+adjective treatment	56.4	46.8	23.8	18.9
1k	52.4	40.7	30.0	10.6
+dictionary	48.0	36.5	36.0	6.8
+adjective treatment	44.5	34.8	40.9	5.9
13k	41.8	30.7	43.2	2.8
+dictionary	40.6	29.6	46.3	2.4
+adjective treatment	38.3	29.0	49.6	2.2
1.3M	34.5	25.5	54.7	0.14
+adjective treatment	33.5	25.2	56.4	0.14

observations:

- significant effect of OOV words: difference in PER is largely caused by OOV effect!
- reasonable translation quality using small corpora dictionary and morpho-syntactic information are helpful

Summary

today's statistical MT:

- IBM models for word alignment: learning from bilingual data
- from words to phrases: phrase extraction, scoring models and generation (search) algorithms
- experience with various tasks and 'distant' language pairs
- text + speech

helpful conditions:

- availability of bilingual corpora
- automatic evaluation measures
- public evaluation campaigns
- more powerful computers and algorithms/implementations

THE END

