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Phrase-based SMT (state-of-art)!  Or syntax-based SMT?
o context = aligned words, adjacent ¢ context = aligned words,
word sequences (“phrases”) governor, complements

word trans.unit  lcontext q m N

subj vobj mod pred nobj
although it is not_about money although 1t is not _about imoney

© in our\opinion
vores gpfattelse

@ in our opinion

® efter\ores opfatelse
N\ /\

selv om den*kke handler om penge 'selv om den ikke handler om| penge
even if it not deals  with money nobj subj mod  vobj  pobj nobj

=> smaller translation units g @ o

=> more linguistically relevant context
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Background: Most syntax-based SMT uses context-free formalisms
where sentences are always projective (no crossing branches). However,
as observed by Nilsson et al (2007), 11-34% of sentences in CoNLL dep.
treebanks for Slovene, Arabic, Dutch, Czech, Danish are non-projective.

Problem: Need linguistically realistic SMT models that can deal with non-
projectivity, island constraints, complement-adjunct distinction, deletions
and additions, translational divergences such as head-switching, etc.

This talk: Define a probabilistic dependency model that attempts to do this
(as a first step, not a final solution).

Not this talk: Specity algorithms for model learning, translation and
parallel parsing (ideas, see paper). Report experimental results (no
implementation yet, work in progress).
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The vision: Create a probabilistic generative dependency model that
assigns local probabilities to each generative step in a parallel analysis.

“Unusually” low elicited local probabilities
indicate localized grammatical errors -h

=> model makes verifiable linguistic subj vobj mod  m

predictions about localized errors although 1t e luckily about money
(one evaluation criterion in future SMT). k \ Xﬁ\
Computation is performed by local selv om [déf méske ikke handler om penge
structure-changing repair-operations od  mod  vobj  pobj nobj

that are guided by the errors in the
analysis, as in human processing.
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Dependency model: A generative probability measure P on the space
Ana of all conceivable parallel dependency analyses.

Model learning: estimate P from a given parallel dependency treebank T
(and possibly a given parallel corpus C as well).

Translation: Given source text t, compute:

Translate(t) = argmax y P(A)

AcAna,Y(A)
Y(A) = source text of A. Y'(A) = target text of A.

Parallel parsing: Given source and target texts t,t', compute:

Parse(t, t') = argmax AcAna.Y(AJLY(A)=t P(A)
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A dependency tree (deep tree) encodes complement or adjunct
relationships (dependencies). Known from CoNLL. Example:

head of phrase
DEPENDENCIES mq N
subject ' '

dependency

dependent governor

Phrases are a derived notion: each word heads a phrase consisting of all
the words that can be reached from the word by following the arrows.

dobj | direct object pobj | prep. object subj subject

iobj | indirect object pred | predicative vobj | verbal object
mod | modifier rel relative

nobj | nominal object root | root node
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Parallel dependency analyses
consist of three components:

* a dependency analysis of the

source text although 1t 1s not about mone
* a dependency analysis of the

target text

* a word alignment linking
corresponding words in the
source and target texts
(lexical translation units)

selv om den ikke handler om penge

even if it not deals  with money
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i“! 2. Parallel dependency analyses 22 gar*:"el_d‘ipe“dle:‘_cy a"“_‘t'yses
1 . .J. OyNtactic transiation units
gﬁgfnnehsasgseghool 2 gs:i:‘zgi‘:;dependency VI 2.4. Surface trees (landing sites)
O B e : 2.5. Word order control
5. Extra stuff 2.6. Extraction paths and island constraints
Syntactic translation units can be d mq
computed from parallel dependency vobj  subj pred  nobj

treebanks (Buch-Kromann, 2007a).  although x1 x1 is about x2

If word alignments are inconsistent /L / \ \§\\
with parses, merging can make

them consistent. Eg, head- selv om x1 x1 handler om x2
nobj vobj subj pobj nobj

switching, relation-changing, etc. k) \} w \}

The resulting syntactic translation ot money
units can be much larger than
original alignments (2-50 nodes). \ \ I

Small treebanks can be used to den ikke  penge

bootstrap large treebanks.
tunits are unordered!
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Deep trees may have crossing arcs. But in order to control word order, we
need a surface tree without crossing arcs. Example:

DEEP & crossing arcs
TREE /A Y % 2

subj root pred mod nobj pobj vobj

TOP it was hard plan (to)\ implement
N V A N P \Y
SURFACE land la and land lan land land

TREE =>

landing site min. lifting landed nodes

Parents in the surface tree are called landing sites, and children are
called landed nodes. Landing site = lowest transitive governor that
dominates all words between node and governor.
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Landing sites allow us to control the local word order by looking at the
relative order of the landed nodes at each landing site. Examples:

AN AT

nobj pobj vobj mod nobj pobj vobj

lan to 1mplement ard plan to 1mplement GOOD
A N P
land land xland land land land xland land

The left example is bad because the landed node “hard” precedes the
landing site “a”

The right example IS ok wrt. the order of the landed nodes at “@”

BAD hard
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The extraction path is the path from a word's governor to its landing site.
By looking at this path, we can determine whether any island constraints
are violated. Eg, the adjunct island constraint is violated below.

adjunct edge:

BAD!!!
dobj subj  dobj subj 1 €xtraction path

horte jeg  digtet som altld
V N N

heard I the—poem Wthh always

xland land land land land

extracted
node

governor

landing site
“| heard the poem which always pleases Alice.”
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The dependency model is
generative, ie, it is based

on a Markov process (like
Collins 1997).

The graphis grown in a
recursive top-down
manner — first the source
analysis, then the target
analysis. Each step is
emitted with a certain
probability.

4. Conclusion
5. Extra stuff

3.1. Generative procedure

3.2. T1 Select landing sites and word order
3.3. T2 Translate arguments of translation unit
3.4. T3 Delete singular source adjuncts

3.5. T4 Translate parallel adjuncts

3.6. T5 Add singular target adjuncts

procedure probabilistic graph generation

begin
recursively expand source root T'OP (cf. Figure 7)
recursively translate source root T'OP (cf. Figure 8)
return generated graph and probability

end

n expansmn of source node wi
S1. Identi site and rel; rd order
S2. Select complem
S3. Gener: lements
erate and recursively expemd adjunc

Top-down translation of source node w;

T1. Identify landing sites and word order in target tunit
T2. Generate and recursively expand tunit arguments
T3. Identify deleted source adjuncts

T4. Generate and recursively translate parallel adjuncts

TS. Generate added target adjuncts
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S1/T1. Select landing site and word order. mf\.m
subj pobj vebj vobj mo

Eg, we must choose a landing site for “today” ,they,need ,to be, he e.today
. . “ TR land lanc’ lan land land
among its transitive governors (“be”, “t0”,

U
“‘need”) and a valid position (0-5) relative to QJ
the other landed nodes at the landing site. VA 6\

subj pobj vobj vobj mo
sub] b] vobj
othey;nee e, her
land nd land

they, need,, 6 3 be, her today

0
._-‘*. land land land land land

ENAN )

The eXtraCthn path needS tO be CheCked fOr subj pobj veb; vobj mo
“blocking edges” that prevent the extraction. ~ @'*<Yafi€€dy t© 5 bey Ifnrj.t?iiy

NN S A
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Relative probability of extraction path: K m\qr\,
: mod subj pobj vobj vobj
. Pextpath (to :Lbj be|today™) toda theyl_ to 5 be jhere .
min 15 vobi INSERT: landtod St tland land landt
Paepiree (0 == be) w@ JU

Probability of finding edge in

“extraction path given extr. word.

, Pextpath (need PO to|today™®)
-min | 1, o
P deptree (need u tO)

Rel. prob. of chosen local word order: e

Porder (today | cneed.o) H Prvorder (STOP|Caeedt..) dependency tree.

w=12,5 Ratio>1: above chance-level
Finally normalize so that probabilities of all (with prob. 1 don't block)
choices of landing site and local word order ~ hatio<1:below (blocking edge)
sum to 1. Cneed,o IS the local word order

context in position o at “need”.
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T2 Translate arguments of a tunit: (ﬁm
select tunits for the arguments, striking a sub mod - vobj  pred  mod

: De Dbgr nemlig vere med idag
compromise btw. adequacy and fluency. They ought namely be with today

Adequacy: How probable is the target
argument dependency structure as a
translation of the source arg. dep. structure?

x1 need to x2

subj pobj vobj
A(veere, 74) = Pnit(71|vere™)
Fluency: How well does the target arg. Y T Y
. - n pred pred
structure fit into existing target structure’ gre——m

F(VEBI“S, ’7'4) :Pcomp’ (be|V0bj= 33;) I | , I I

. pred they these be x1  be here
PS"234 (be( here)) T1 T2 pred pred

T3 u T4\—J



1. Dependency-based SMT
i“! 2. Parallel dependency analyses
)

Copenhagen 3. Generatlye dependency model
Business School 4, Conclusion
HANDELSH@)SKOLEN 5 Extra Sthf

3.1. Generative procedure

3.2. T1 Select landing sites and word order
3.3. T2 Translate arguments of translation unit
3.4. T3 Delete singular source adjuncts

3.5. T4 Translate parallel adjuncts

Compromise: Weigh adequacy and fluency
with some parameter A (say 1/2), and
normalize:

A1/2 12
normalization
Iterate through all arguments:

Pransfer (VEB]_‘E‘,, 7_4) —

Phrranster (de, 7—1) - Pransfer (VEEI‘B, 7_4)

3.6. T5 Add singular target adjuncts
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T3. Delete singular source adjuncts (m m

To model deletiOnS In the transla- subj mod pred med
tion, we must decide for each adjunct De nemlig med idag
phrase whether we will delete it. ~ They namely with ffoday

Eg, when translating “veere” (*be”), DELETE KEEP

we choose to keep “idag” (“today”).
they need to be here

. *
P, del(KEEP|1dag ) subj pobj vobj pred

Later on at “bar” (“ought”), we decide w \j\)

to delete “nemlig” (“namely”).
Pye1(DELETE |nemlig™ )



1. Dependency-based SMT 3.1. Generative procedure
i“! 2. Parallel dependency analyses 3.2. T1 Select landing sites and word order
)

3. Generative dependency model 3.3. T2 Translate arguments of translation unit

Copenhagen : 3.4. T3 Delete singular source adjuncts
Eff;?gismsscg‘:?: 4. Conclusion 3.5. T4 Translate parallel adjuncts
5. Extra stuff 3.6. T5 Add singular target adjuncts
T4. Translate parallel adjuncts (m m
To translate the non-deleted adjunCt subj vobj pred _med
“idag” ("today”), we must: De bgr nemlig vaere med [idag

They ought namely be with today

NP

they need to today

(a) select governor and adjunct role
within the target unit “be(Predhere)”.

Eg, select “be” + adjunct role “mod”:

Paditrans (be, mod|idag™, mod)

subj pobj

Pydjtrans (be, mod) w \) w

normalization

(b) translate “idag” (“today”) by
selecting a translation unit for it,
emitting probabilities as in step T2.
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T5. Add singular target adjuncts (m 6\
Geperate smgular target.adjuncts M A A A ¢
(adjunct role first, then adjunct .tree) De ber nemlig veere med idag
and then STOP for each node in the They ought namely be with today

target unit in target top-down order. \
— 4

Eg, for “veere” (“be”), generate “,” and o day/

STOP for “need”, and STOP for “to”.

mod
Padd-arole (pnct|need™ ) Padd-aqgj (, [need™)
- Padd-arole (STOP|tO*)
+ Padd-arole (STOP|need™)
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Conclusion: | have:

e argued that it is important to develop syntax-based SMT models;
* argued that context-free SMT models cannot model non-projectivity;

* proposed a dependency-based model that can handle non-projectivity,
Island constraints, complement-adjunct distinction, deletions and additions
(and head-switching, see extra stuff) — at least in theory.

Future work: Much still remains to be done:
* puild a functioning SMT system and evaluate it

* extend the model wrt morphology, syntax and discourse structure

THANKS FOR LISTENING
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Lexical tunit alignments Syntactic tunit alignments

2NN aa TR

subj mod mod subj mod mod
Jan zwemt toevallig graa Jan zwemt, toevallig , graag ,
Jan swims by-chance willingly swims by—chance willingly

e -

Jan happens to like to swim | Jan happens to, like to; swim,

subj pobj vobj pobj vobj subj pobj vobj pobj  vobj

NNV O I NI VI,

Figure 4: A head-switching example (left) and the
associated minimal reduction (right).
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Source match
H; = zwemt

subj mod mod Hs = toevallig
xl HI H2 H3 Hj; = graag
Target match

H{ = swims
x1' H2a' H2b' H3a' H3b' HI' | A’ , — happens(™"ito)
stbj pobj  wvobj  pobj vobj o 5, ,b — ike(pnhjt 0)

NN

Figure 5: Syntactic translation template induced
from Figure 4, with source and target match.
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* Time complexity (exact): Exact translation and parallel parsing with our
language model is NP-hard (Buch-Kromann, 2006).

* Time complexity (heuristic): For monolingual parsing, it is possible to
find heuristic algorithms based on local search with time complexity
O(n logk n) (cf. Buch-Kromann 2006, 2007b).

* Algorithm: Start with the empty analysis, construct analysis
incrementally by applying local probability-increasing parsing operations
that introduce new words, or create or modify dependency edges.
Alternative for translation: parse, then use generative procedure greedily.

* Errors: Probabilistic dependency model can be used to pinpoint errors in
the analysis (error = unusually low probability in generative step).

* Error-driven operations: A chain of elementary operations each of
which corrects an error in the graph introduced by the previous operation.
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» Statistical estimation: Use your favorite statistical methods, eg,
Generalized Linear Models and Generalized Additive Models (log-linear
methods are a special case).

* Correction estimators: In steps S1, T1, and T4 of the model, we need
to estimate a posterior divided by a prior (P(xly) / P(x)). Thus a
correction estimator, where we first estimate P(x) and then C(xly) = P(xly) /
P(x), may be particularly useful for this purpose — eg, the XHPM method
proposed by (Buch-Kromann, 2006), which is a generalization of (Li and
Abe, 1997).
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Examples of parallel dependency
treebanks include:

The Prague Czech-English
Dependency Treebank. although it is not about mone

The Copenhagen Danish-English
Dependency Treebank.

Constituency-based parallel
treebanks converted to
dependency representation.

selv om den ikke handler om penge

Any pair of monolingual treebanks
with the same underlying corpus.



