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Introduction
◮ problem: all approaches in sign language research work on an inter-

mediate language

◮ sign language in machine recognition:

⊲ input: video of signing person
⊲ output: semantic sign language representation (e.g. glosses)

◮ sign language in machine translation:

⊲ input: semantic sign language representation
⊲ output: written language (i.e. English)

◮ not directly intelligable by either hearing or deaf people

◮ incorporating statistical machine translation (SMT) on top of the
recognition process:

⊲ converts glosses into written English
⊲works even for very small corpora
⊲data derived during the recognition can be used as additional knowl-
edge source

Intermediate Notation

◮ sign languages lack a formally adopted writing system

◮ syntactic representations describe handshape, location and movement
of a sign

◮ glosses are a semantic representation of sign language

⊲ conventionally transcribed in the upper case stem form of the local
spoken language

⊲ includes spatial and non-manual information

TranslationRecognition

MARY_a VEGETABLE IX−1P 

KNOW IX_a LIKE CORN

I know that, as for vegetables,
Mary likes corn

Sign Language Recognition
◮ a sign/gesture is a sequence of images

◮ important features

⊲hand-shapes, facial expressions, lip-patterns
⊲ orientation and movement of the hands, arms or body

◮ HMMs are used to compensate time and amplitude variations of the
signers

◮ goal: find the model which best expresses the observation sequence

◮ to classify an observation sequence XT
1 , we use the Bayesian decision

rule:
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Recognized Word Sequence
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Tracking
◮ tracking is done at the end of a sequence by tracking back the decisions

to reconstruct the best path

◮ the best path is the path with the highest score
wrt. a given scoring function

Sign Language Translation
◮ state-of-the-art phrase-based statistical machine translation system

⊲ for a recognized sequence fJ
1 we maximize a translation probability

for target sentences eI
1

⊲ log-linear combination model:
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⊲ set of different features hm, scaling factors λm

⊲ trained with downhill simplex algorithm

◮ tracking positions of the sentences were clustered
and their mean calculated

◮ for deictic signs, the nearest cluster according to the Euclidean distance
was added as additional word information for the translation model

Experimental Results
◮ RWTH-Boston-104 database:

⊲161 training sentences, 40 test sentences

Experimental
Results

WER[%] PER[%]

recognition 17.9 -
translation 21.2 20.1
sign-to-speech 27.6 23.6

◮ RWTH-Boston-Hands database:

⊲1000 annotated frames, 2.3% tracking error rate
⊲ tracking of head and dominant-hand for ASLR

◮ enhancement with dominant-hand tracking features

Translation Features
(different split)

WER[%] PER[%]

without tracking 28.5 23.8
with tracking 26.5 23.5

Translation Example
without tracking John gives that man a coat
with tracking John gives the man over there a coat.

Conclusion
◮ first data-driven automatic sign-language-to-speech translation system

◮ approach works for extremely small corpora typically encountered

◮ can be easily trained on new language pairs and new domains

◮ incorporation of the tracking data for the deictic words helps
the translation system to discriminate between

⊲distinctive article,
⊲ locative reference or
⊲discourse entity reference

Outlook
◮ stemming of the glosses (i.e. leaving out the inflection)

◮ adding relevant features later in the translation

◮ model for all discourse entities

◮ handling spatial verb flexion, time information
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