
Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Reordering in Statistical Machine
Translation with a POS-Based Distortion Model

Kay Rottmann (UKA), Stephan Vogel (CMU)

September 7, 2007

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

1 Motivation
Word Order Problem
Current Approaches
Goals

2 The Model
Using POS Information
Learning the Rules
Application of the Rules
Reordering of Training Corpus

3 Experiments
Setup
Results

4 Conclusion

5 Translation Examples

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Order Problem
Current Approaches
Goals

Problem of Word Order

Different languages differ in word order

Differences within small context

Example: ADJ NN → NN ADJ

An important agreement
Un acuerto importante

Long range reorderings

Example: auxiliary verb and infinite verb

Ich werde morgen nachmittag ... ankommen
I will arrive tomorrow afternoon ...
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Current Approaches

IBM constraints [BePP96], ITG [Wu96], lexicalised block
oriented model [KAMCB+05] . . .

Reordering of source sentence [ChCF06], [PoNe06], [CrMa06]

Reordering before translation process
monotone decoding
more than one word order coded in lattice structure

⇒ our work based on this approach

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Order Problem
Current Approaches
Goals

Current Approaches

IBM constraints [BePP96], ITG [Wu96], lexicalised block
oriented model [KAMCB+05] . . .

Reordering of source sentence [ChCF06], [PoNe06], [CrMa06]

Reordering before translation process
monotone decoding
more than one word order coded in lattice structure

⇒ our work based on this approach

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Order Problem
Current Approaches
Goals

Current Approaches

IBM constraints [BePP96], ITG [Wu96], lexicalised block
oriented model [KAMCB+05] . . .

Reordering of source sentence [ChCF06], [PoNe06], [CrMa06]

Reordering before translation process

monotone decoding
more than one word order coded in lattice structure

⇒ our work based on this approach

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Order Problem
Current Approaches
Goals

Current Approaches

IBM constraints [BePP96], ITG [Wu96], lexicalised block
oriented model [KAMCB+05] . . .

Reordering of source sentence [ChCF06], [PoNe06], [CrMa06]

Reordering before translation process
monotone decoding

more than one word order coded in lattice structure

⇒ our work based on this approach

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Order Problem
Current Approaches
Goals

Current Approaches

IBM constraints [BePP96], ITG [Wu96], lexicalised block
oriented model [KAMCB+05] . . .

Reordering of source sentence [ChCF06], [PoNe06], [CrMa06]

Reordering before translation process
monotone decoding
more than one word order coded in lattice structure

⇒ our work based on this approach

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Order Problem
Current Approaches
Goals

Current Approaches

IBM constraints [BePP96], ITG [Wu96], lexicalised block
oriented model [KAMCB+05] . . .

Reordering of source sentence [ChCF06], [PoNe06], [CrMa06]

Reordering before translation process
monotone decoding
more than one word order coded in lattice structure

⇒ our work based on this approach

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Word Order Problem
Current Approaches
Goals

Goals

Restriction of search to make it fast

Correct reorderings in different contexts

Better translations of long range reorderings
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How the System works

Reorderings based on rules extracted prior to translation from
corpus

Use of POS-Tags for generalization

POS-Tagger are available for many languages

Assign probabilies to rules

as a guide for the decoding process

Create a lattice with possible reorderings

Decoder finds best monotone translation path through the
lattice
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What is a Rule

A rule consists of three parts:

Left hand side: Sequence of POS on the source side

Right hand side: Permutation on that word order
Score for the rule: Relative frequency

Example: ADJ NN → 1 0 : 0.72
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Context Dependency of Rules

Left hand side is the POS-Sequence that needs to be reordered

Problem: different reorderings for the same POS sequence

He will come.

Er wird kommen.

He says that he will come.

Er sagt, dass er kommen wird.

Idea: Use more complex left hand side that indicates the
context ⇒

Usage of POS-Tags to the left and / or right of sequence
Usage of words to the left and / or right of sequence
Usage of words as the sequence
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Example Rules with Context Information

source sequence rule freq.

PDAT NN VVINF 3 1 2 0.60

VVFIN :: PDAT NN VVINF 3 1 2 0.71

moechte :: PDAT NN VVINF 3 1 2 0.92

Table: Example rules for German to English translation with no context,
with one tag of context to the left and one word of context to the left

”Ich moechte diese Gelegenheit nutzen , . . . ”

becomes ”Ich moechte nutzen diese Gelegenheit , . . . ”
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Learning the Rules

Use aligned corpus with a tagged source side

whenever there is a crossing of alignments in a sentence

store rules for different context types and count them

But only if the rule occurs without being part of a larger
reordering that will be learned

This reduces the number of rules - allows longer reorderings
without getting problems in decoding time
Significant rules will still be extracted

Compute relative frequency for every rule

Throw away rules seen less than a given threshold
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Building the Lattice (Basics)

Start with monotone path of the sentence, weight of every
edge = 1.0

Test for subsequences of the sentence, if a rule for that exists

Start with longest subsequences
adjust score of first edge according to monotone path
before testing rules that are shorter adjust score for monotone
path

BUT: This works only for one rule type!
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Building the Lattice (Advanced)

For more rule types: Combination is needed

Use of all individual scores is bad

Same reorderings get different scores because of context
Scores will contradict each other
Optimization will lead to a preferred single type

⇒ For same reorderings use max score of all rule types

For monotone Path:

use minimum score over all individual scores for the monotone
path
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Reordering of the Training Corpus

Phrases from reordered corpus were shown to perform better
[PoNe06]

Idea: phrases match the situation in the lattice better than
before

Question: How should the training be corpus reordered?

Usage of alignment information to monotonize alignment

new alignment should be nearly monotone

Usage of the rules to reorder corpus

better fits the decoding situation
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Setup

English → Spanish (TC-Star 07)

Training Corpus: Europarl Corpus 33M Words
Developement Set: 1.2K Sentences / 79 OOV
Test Set: 1.1K Sentences / 105 OOV
2 References

German ↔ English (WMT 06)

Training Corpus: Europarl Corpus 34M Words
Developement Set: 2K Sentences / (306 / 62) OOV
Test Set: 2K Sentences / (551 / 250) OOV
1 Reference

Brill Tagger for English (36 Tags)

Stuttgart Tree-Tagger for German (57 Tags)

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Setup
Results

Setup

English → Spanish (TC-Star 07)

Training Corpus: Europarl Corpus 33M Words
Developement Set: 1.2K Sentences / 79 OOV
Test Set: 1.1K Sentences / 105 OOV
2 References

German ↔ English (WMT 06)

Training Corpus: Europarl Corpus 34M Words
Developement Set: 2K Sentences / (306 / 62) OOV
Test Set: 2K Sentences / (551 / 250) OOV
1 Reference

Brill Tagger for English (36 Tags)

Stuttgart Tree-Tagger for German (57 Tags)

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Setup
Results

Setup

English → Spanish (TC-Star 07)

Training Corpus: Europarl Corpus 33M Words
Developement Set: 1.2K Sentences / 79 OOV
Test Set: 1.1K Sentences / 105 OOV
2 References

German ↔ English (WMT 06)

Training Corpus: Europarl Corpus 34M Words
Developement Set: 2K Sentences / (306 / 62) OOV
Test Set: 2K Sentences / (551 / 250) OOV
1 Reference

Brill Tagger for English (36 Tags)

Stuttgart Tree-Tagger for German (57 Tags)

Kay Rottmann (UKA), Stephan Vogel (CMU) Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model



Outline
Motivation
The Model

Experiments
Conclusion

Translation Examples

Setup
Results

Combination of all Ruletypes

Addition of different context types to the rules

System en → es en → de de → en

Baseline(RO3) 48.51 17.69 23.70

no Context 49.52 17.78 24.79

Combination 49.58 18.27 24.85

Why is further improvement sometimes so low?

Spanish and English Translations already very good
AND: Phrases did not match lexical reorderings anymore

System en → es en → de de → en

no Lexical Reorderings 49.83 18.21 24.88
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Results

Reordering of Source Corpus

Reordering via GIZA++ alignment information

System en → es en → de de → en
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German Source: bessere Erkenntnisse und moderne Technik
bieten die Chance , die Umwelt in Europas Staedten zu
verbessern .

Baseline: better knowledge and modern technology offer the
chance of the environment in Europe ’s cities to improve .
Combination: better knowledge and modern technology offers
the opportunity to improve the urban environment in Europe .
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Test on other language pairs (Arabic, Japanese, Farsi...)

Additional internal reordering

Long range reorderings (more general)

Dealing with languages without reliable POS-Tagger (using
word clustering techniques)
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The End

Thank you for your attention
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