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Sentence

• translation of a single input

Document

• set of sentence translations

H
u
m
a
n

• average of sentence-level

grades

• discrete evaluation grade

• median score of multiple

human grades

metrics: fluency, adequacy, …

• confidence estimation

• machine learning approach to

predict human grades

classifiers: SVM, DT, …metrics: BLEU, METEOR, …

M
a
ch
in
e

• comparison to (multiple)

reference translations

• assign single numerical score
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Assessment of
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Assessment of

Machine Translation Quality

Document Sentence

U
sa
g
e

• evaluation of MT system

development progress

•MT system comparison

(NIST, IWSLT, …)

• usability of given translation

in a real-world application

(post-editing, dialog trans-

lation, …) 

P
ro
b
le
m
s • complexity of evaluation task

(multi-class classification)

• granularity of evaluation

grades

• quality/coverage of 

reference translations

• “meaning” of (numerical)

automatic evaluation scores
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Outline of TalkOutline of Talk

2. Experimental Results:

• large-scale human-annotated evaluation corpus

•••• coding matrix optimization

•••• classification accuracy

•••• correlation to human assessments

1. Prediction of Sentence-Level Translation Quality:

•••• decompose multi-class to binary classification
° a coding matrix

•••• learn set of binary classifiers
° feature selection, standard machine learning techniques

•••• predict multi-class label
° compare binary classification results to coding matrix
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Grade = fluency

Flawless English
Good English
Non-native English
Disfluent English
Incomprehensible

Human Assessment

Training Corpus

Test  Set

Annotated

Evaluation Corpus

Evaluation
(classification accuracy)

5, 4, 3, 2, 1

Binary

Classifier 

+1, −−−−1

Machine Learning
(SVM, DT, …)

ID | Grade | F1 | F2 | …

Feature Extraction

Multi-class

Classifier

ID | F1 | F2 | …

Feature Extraction

ID | Binary-Class

ID | Multi-Class



Spoken Language Communications

Research Laboratories

Spoken Language Communication Group

2007 NICT/ATR- 6 -TMI 2007

Classification TaskClassification Task

Goal: predict human evaluation grade (fluency, 

adequacy, …) for a given translation

→ multi-class label

Multi-Class Classification:

☺☺☺☺ direct prediction of multi-class label 

���� classification accuracy is low

Binary-Class Classification:

☺☺☺☺ classification accuracy is high 

���� multi-class label cannot be derived reliably
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Proposed SolutionProposed Solution

Reduction of Classification Complexity: 

• decompose multi-class task into a set of binary 

classification problems

• apply standard learning algorithm to train

binary classifiers

• combine results of binary classifiers

using a “coding matrix” to predict multi-class label

→→→→ increase in classification accuracy

→→→→ independent from learning algorithm
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Proposed SolutionProposed Solution

Feature Selection for Translation Quality Prediction: 

• multiple automatic evaluation metric scores

° BLEU °WER ° GTM
° NIST ° PER
°METEOR ° TER

• metric-internal features

° ngram-prec ° length ratio °…

→→→→ takes into account different aspects of MT quality

→→→→ independent from target language and MT system
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:
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of Binary 
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Results

:

Multi-Class To Binary

Class Decomposition
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Proposed MethodProposed Method

1. Decomposition Phase: 

• decompose multi-class into set of binary classification tasks:

° one-against-all (5, 4, 3, 2, 1):

Example: 

5 : +1 → all training examples tagged with grade 5

−1 → all training examples tagged with grade 4 or 3 or 2 or 1)

° boundary (54_321 , 543_21):

Example: 

54_321 : +1 → all training examples tagged with grade 5 or 4

−1 → all training examples tagged with grade 3 or 2 or 1

° all-pairs (5_4 , 5_3 , 5_2 , 5_1 , 4_3 , 4_2 , 4_1 , 3_2 , 3_1 , 2_1):

Example: 

5_4 : +1 → all training examples tagged with grade 5

−1 → all training examples tagged with grade 4
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Proposed MethodProposed Method

2. Learning Phase: 

• learn binary classifier for each decomposition task

° feature set selection/extraction 

(exp):  + 54 features (7 autom. eval. scores + metric-internal features)

° classifier training

(exp):  + fluency/adequacy,  DT classifier (+ SVM classifier)

• identify optimal subset of binary classifiers

• create coding matrix
° column: class of pos./neg. training examples (for given binary classifier)

° row: correct binary classification result (for a given multi-class label)

3. Application Phase: 

• apply all binary classifiers to given input → classification vector v

• match v against coding matrix rows to identify multi-class label
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Outline of Proposed MethodOutline of Proposed Method
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Basic Travel Expression Corpus (BTEC): 

• 36K English translations of 4K Japanese/Chinese inputs

• human assessments and automatic evaluation scores

Evaluation CorpusEvaluation Corpus

0%

10%

20%

30%

40%

5 4 3 2 1

fluency adequacy

7,590 (15 MT x 506) test

2,024 ( 4 MT x 506)develop

25,988training

fluency/ adequacysentence count
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SummarySummary

Multiclass reduction to binary:

• robust and reliable method to predict human assessments

on sentence-level

• high correlation to human judges outperforming commonly used 

automatic evaluation metrics

• outperforms standard classification methods
→ gains: +6.0 (fluency) and +6.6 (adequacy) in classification accuracy

Extension of proposed method:

• apply learning method to select features used to build

the coding matrix

• investigate in the use of additional features that increase

binary classification accuracy and thus boost overall multi-class

prediction accuracy


