

Reducing Human Assessment of Machine Translation Quality to Binary Classifiers

September 8, 2007

Michael Paul, Andrew Finch, Eiichiro Sumita

NICT Spoken Language Communication Group, ATR Spoken Language Communication Research Laboratories Kyoto, Japan

Assessment of Machine Translation Quality

Document

• set of sentence translations

• average of sentence-level grades

• comparison to (multiple) reference translations

• assign single numerical score

metrics: BLEU, METEOR, ...

Sentence

- translation of a single input
- discrete evaluation grade
- median score of multiple human grades

metrics: fluency, adequacy, ...

- confidence estimation
- machine learning approach to predict human grades

Human

Machine

classifiers: SVM, DT, ...

Usage

Assessment of Machine Translation Quality

Document

- evaluation of MT system development progress
- MT system comparison (NIST, IWSLT, ...)

- quality/coverage of reference translations
- "meaning" of (numerical) automatic evaluation scores

Sentence

• usability of given translation in a real-world application (post-editing, dialog translation, ...)

- complexity of evaluation task (multi-class classification)
- granularity of evaluation grades

Problems

Outline of Talk

<u>1. Prediction of Sentence-Level Translation Quality:</u>

- decompose multi-class to binary classification ° a *coding matrix*
- learn set of binary classifiers
 - ° feature selection, standard machine learning techniques
- predict multi-class label

° compare binary classification results to *coding matrix*

2. Experimental Results:

- large-scale human-annotated evaluation corpus
- coding matrix optimization
- classification accuracy
- correlation to human assessments

Classification Task

<u>Goal:</u> predict human evaluation grade (*fluency*, *adequacy*, ...) for a given translation \rightarrow multi-class label

Multi-Class Classification:

Object direct prediction of multi-class label
Classification accuracy is low

Binary-Class Classification:

- © classification accuracy is high
- 🙁 multi-class label cannot be derived reliably

Proposed Solution

Reduction of Classification Complexity:

- decompose multi-class task into a set of binary classification problems
- apply standard learning algorithm to train binary classifiers
- combine results of binary classifiers using a "*coding matrix*" to predict multi-class label

→ increase in classification accuracy

→ independent from learning algorithm

Proposed Solution

Feature Selection for Translation Quality Prediction:

• multiple automatic evaluation metric scores

° BLEU	° WER	° GTM
° NIST	° PER	
° METEOR	° TER	

• metric-internal features

 $^{\circ}$ ngram-prec $^{\circ}$ length ratio $^{\circ}$...

→ takes into account different aspects of MT quality
→ independent from target language and MT system

Proposed Method

<u>1. Decomposition Phase:</u>

- **decompose multi-class** into set of binary classification tasks:
 - ° one-against-all (5, 4, 3, 2, 1):

Example:

- 5 : +1 \rightarrow all training examples tagged with grade 5
 - $-1 \rightarrow$ all training examples tagged with grade 4 or 3 or 2 or 1)
- ° *boundary* (54_321 , 543_21):

Example:

54_321 : +1 \rightarrow all training examples tagged with grade 5 or 4

 $-1 \rightarrow$ all training examples tagged with grade 3 or 2 or 1

° *all-pairs* (5_4 , 5_3 , 5_2 , 5_1 , 4_3 , 4_2 , 4_1 , 3_2 , 3_1 , 2_1): *Example*:

5_4 : +1 → all training examples tagged with grade 5 -1 → all training examples tagged with grade 4

Proposed Method

2. Learning Phase:

- learn binary classifier for each decomposition task
 - ° feature set selection/extraction

(exp): +54 features (7 autom. eval. scores + metric-internal features)

° classifier training

(exp): +*fluency/adequacy*, DT classifier (+ SVM classifier)

- identify optimal subset of binary classifiers
- create *coding matrix*

column: class of pos./neg. training examples (for given binary classifier) *row*: correct binary classification result (for a given multi-class label)

3. Application Phase:

- apply all binary classifiers to given input \rightarrow *classification vector v*
- match v against *coding matrix* rows to identify *multi-class label*

Combination of Binary Classifiers using a Coding Matrix

Combination of Binary Classifiers using a Coding Matrix

all-pairs

_	$c_1 \bullet c_2$	$\mathbf{c}_1 \bullet \mathbf{c}_3$	$c_2 \bullet c_3$	distance	select
c ₁	+1	+1	0	1	
c ₂	-1	0	+1	3	c ₁
c ₃	0	-1	-1	2	

Evaluation Corpus

Basic Travel Expression Corpus (BTEC):

- 36K English translations of 4K Japanese/Chinese inputs
- human assessments and automatic evaluation scores

sentence count	fluency/ adequacy
training	25,988
develop	2,024 (4 MT x 506)
test	7,590 (15 MT x 506)

(classification accuracy on DEV set)

Coding Matrix Optimization (classification accuracy on DEV set)

Coding Matrix

	54_ 321	543 _21	5_4	5_3	5_2	5_1	4_3	4_2	4_1	3_2	3_1	2_1	5	4	3	2	1
5	+1	+1	+1	+1	+1	+1	0	0	0	0	0	0	+1	-1	-1	-1	-1
4	+1	+1	-1	0	0	0	+1	+1	+1	0	0	0	-1	+1	-1	-1	-1
3	-1	+1	0	-1	0	0	-1	0	0	+1	+1	0	-1	-1	+1	-1	-1
2	-1	-1	0	0	-1	0	0	-1	0	-1	0	+1	-1	-1	-1	+1	-1
1	-1	-1	0	0	0	-1	0	0	-1	0	-1	-1	-1	-1	-1	-1	+1

(omission of worst-performing classifier)

©2007 NICT/ATR

(classification accuracy on DEV set)

Coding Matrix Optimization (classification accuracy on DEV set)

Coding Matrix

	54_ 321	543 _21	5_4	5_3	5_2	5_1	4_3	4_2	4_1	3_2	3_1	2_1	5	4	3	2	1
5	+1	+1	+1	+1	+1	+1	0	0	0	0	0	0	+1	-1	-1	-1	-1
4	+1	+1	-1	-1	0	0	+1	+1	+1	0	0	0	-1	+1	-1	-1	-1
3	-1	+1	0	-1	0	0	-1	0	0	+1	+1	0	-1	-1	+1	-1	-1
2	-1	-1	0	0	-1	0	0	-1	0	-1	-1	+1	-1	-1	-1	+1	-1
1	-1	-1	0	0	0	-1	0	0	-1	0	0	-1	-1	-1	-1	-1	+1

(omission of worst-performing classifier)

©2007 NICT/ATR

(classification accuracy on DEV set)

Coding Matrix Optimization (classification accuracy on DEV set)

Coding Matrix

	54_ 321	543 _21	5_4	5_3	5_2	5_1	4_3	4_2	4_1	3_2	3_1	2_1	5	4	3	2	1
5	+1	+1	+1	+1	+1	+1	0	0	0	0	0	0	+1	-1	-1	-1	-1
4	+1	+1	-1	-1	0	0	+1	+1	+1	0	0	0	-1	+1	-1	-1	-1
3	-1	+1	0	-1	0	0	-1	0	0	+1	+1	0	-1	-1	+1	-1	-1
2	-1	-1	0	0	-1	0	0	-1	0	-1	-1	+1	-1	-1	-1	+1	-1
1	-1	-1	0	0	0	-1	0	0	-1	0	0	-1	-1	-1	-1	-1	+1

(omission of worst-performing classifier)

©2007 NICT/ATR

TMI 2007

Coding Matrix Optimization

Fluency (%) 60 50 classification accuracy 40 30 20 10 0 $\underset{(k)}{\overset{(k)}{\longrightarrow}} \overset{(k)}{\longrightarrow} \overset{(k)$ omitted binary classifier - 26 -©2007 NICT/ATR

NCT Spoken Language Communication Group (classification accuracy on DEV set)

Optimized Coding Matrix

	54_ 321	543 _21	5_4	5_3	5_2	5_1	4_3	4_2	4_1	3_2	3_1	2_1	5	4	3	2	1
5	+1	+1	+1	+1	+1	+1	0	0	0	0	0	0	+1	-1	-1	-1	-1
4	+1	+1	-1	-1	0	0	+1	+1	+1	0	0	0	-1	+1	-1	-1	-1
3	-1	+1	0	-1	0	0	-1	0	0	+1	+1	0	-1	-1	+1	-1	-1
2	-1	-1	0	0	-1	0	0	-1	0	-1	-1	+1	-1	-1	-1	+1	-1
1	-1	-1	0	0	0	-1	0	0	-1	0	0	-1	-1	-1	-1	-1	+1

Correlation to Human Assessment on Sentence-Level

Adequacy

Summary

Multiclass reduction to binary:

- **robust and reliable** method to predict human assessments on sentence-level
- **high correlation to human judges** outperforming commonly used automatic evaluation metrics
- outperforms standard classification methods \rightarrow gains: +6.0 (*fluency*) and +6.6 (*adequacy*) in classification accuracy

Extension of proposed method:

- apply learning method to select features used to build the coding matrix
- investigate in the use of **additional features** that increase binary classification accuracy and thus boost overall multi-class prediction accuracy