Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

National Centre for Language Technology School of Computing Dublin City University Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Parallel treebanks

A parallel treebank comprises:

- ▶ sentence pairs
- ► parsed
- \blacktriangleright word-aligned
- ▶ tree-aligned

(Volk & Samuelsson, 2004)

The role of alignments:

Santos (1996), paraphrasing Lab (1990):

Having a linguistic description of two languages is not the same as having a linguistic description of the translation between them. Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Parallel treebanks

- Our work involves automatically obtaining a parallel treebank from a parallel corpus via *parsing* and *tree alignment*.
- Our overall objective is to use the parallel treebank for inducing a variety of syntax-aware and syntax-driven models of translation for use in data-driven MT.
- ▶ In this paper/presentation, the focus is on the capture of translational divergences through the application of a tree-aligner to gold-standard tree pairs.

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Capturing translational divergences

We aim to:

- make explicit the syntactic divergences between source and target sentence pairs
- ▶ align to express as precisely as possible the translational equivalences between the tree pair
- constraining phrase-alignments in the data set is a consequence of aligning trees, but not an objective

We remain agnostic with regard to:

- which linguistic formalism is most appropriate for the expression of monolingual syntax
- how best to exploit parallel treebanks for syntax-aware data-driven MT

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Outline

Tree Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Conclusions & Future Work

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Outline

Tree Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Conclusions & Future Work

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Translational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Tree-to-Tree Alignment

Links indicate *translational equivalence*:

- ▶ a link between root nodes indicates equivalence between the sentence pair
- ▶ a link between any given pair of source and target nodes indicates
 - equivalence between the substrings they dominate
 - \blacktriangleright equivalence between the substrings they do *not* dominate

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Translational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Tree-to-Tree Alignment

In the simplest case:

- ▶ the sentence lengths are identical
- ▶ the word order is identical
- ▶ the tree structures are isomorphic

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Tree-to-Tree Alignment

Slightly more complex:

- ▶ not every node in each tree needs to be linked
- each node is linked at most once
- ▶ terminal nodes are not linked

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Tree-Alignment vs. Word-Alignment

Word-alignment: unaligned words are problematic and to be avoided **Tree-alignment**: unaligned nodes are informative

... Jacob's ladder ... \longrightarrow ... l'échelle de Jacob ...

Word alignment: Tree alignment:

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Franslational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Hierarchical alignments

On the relationship between 's and de in

... Jacob's ladder ... \longrightarrow ... l'échelle de Jacob ...

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Outline

Tree Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Conclusions & Future Work

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Translational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Nominalisation

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Translational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Lexical Divergences

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Translational Divergences

> Automatic Free-to-Tree Alignment

Evaluation

Context-Dependent Lexical Selection

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Translational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Embedded Complexities

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Translational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Structural Dissimilarity

'any unauthorised action would invalidate the guarantee'

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Translational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Outline

Tree Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Conclusions & Future Work

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Tree-alignment algorithm

Alignment algorithm:

- hypothesise initial alignments: each source node can link to any target node and vice versa;
- ▶ assign a score to each hypothesised alignment;
- ▶ select a set of links meeting the well-formedness criteria according to a greedy search.

Well-formedness criteria:

- each node can only be linked once;
- descendants of a source linked node may only link to descendents of its target linked counterpart;
- ancestors of a source linked node may only link to ancestors of its target linked counterpart.

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Franslational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Tree-alignment algorithm

	1	2	3	5	6	7	8	9	10	11
1	1	0	0	0	0	0	0	0	0	0
2	-1-	0	0	0	0	0	0	0	0	0
3	0	(3)	0	0	0	0	0	0	0	0
4	0	0	0	0	0	6	0	0	0	0
5	0	0	0	0	-2-	0	(2)	0	0	0
6	0	0	0	0	0	-2-	0	(5)	-4-	0
7	0	0	0	0	-3-	0	0	0	0	(7)
8	0	0	0	0	0	0	0	0	(4)	0
9	0	0	0	0	-3-	0	-2-	0	0	-5-

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Tree-alignment algorithm

$$s_l = b c$$

$$t_l = x y$$

$$\overline{s_l} = a$$

$$\overline{t_l} = w z$$

Computing hypothesis scores:

Assume tree pair $\langle S,T \rangle$, hypothesis $\langle s,t \rangle$, the following strings and GIZA++ / Moses word-alignment probabilities.

$$\begin{array}{ll} s_l = s_i...s_{ix} & \overline{s_l} = S_1...s_{i-1}s_{ix+1}...S_m \\ t_l = t_j...t_{jx} & \overline{t_l} = T_1...t_{j-1}t_{jx+1}...T_n \end{array}$$

Hypothesis score: $\gamma(\langle s, t \rangle) = \alpha(s_l | t_l) \alpha(t_l | s_l) \alpha(\overline{s_l} | \overline{t_l}) \alpha(\overline{t_l} | \overline{s_l})$

String correspondence score: $\alpha(x|y) = \prod_{j=1}^{|x|} \frac{\sum_{i=1}^{|y|} P(x_j|y_i)}{|y|}$

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Outline

Tree Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Conclusions & Future Work

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Methodology

- dataset: HomeCentre English-French corpus, parsed and aligned, 810 sentence pairs
- ▶ Alignment evaluation:
 - precision and recall of automatic alignments vs. manual alignments
- ▶ Translation evaluation:
 - ▶ split the data into training and test, 6 splits, averaged results
 - ▶ MT system used: DOT (Hearne & Way, EAMT-06)
 - ▶ train the system on manual vs. automatic alignments
- Manual analysis of translational divergences

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Alignment Evaluation vs. Gold Standard

		1	Alignment	Evaluatio	n		Zhechev & Way Tree Align
	all li	nks	lexical	links	non-lexic	cal links	Translatic Divergenc
Configs	Precision	Recall	Precision	Recall	Precision	Recall	Automatic Tree-to-Tr Alignment
scr1	0.6162	0.7783	0.5057	0.7441	0.8394	0.7486	Evaluation
scr2	0.6215	0.7876	0.5131	0.7431	0.8107	0.7756	Conclusio Future We
$scr1_sp1$	0.6256	0.8100	0.5163	0.7626	0.8139	0.8002	
$scr2_sp1$	0.6245	0.7962	0.5184	0.7517	0.8031	0.7871	

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley,

Translation Evaluation vs. Gold Standard

	ŗ	Translatio	on Evaluati	on
Configs	Bleu	(all NIST	l links) Meteor	Coverage
manual	0.5222	6.8931	71.8531	68.5417
scr1 scr2	0.5091 0.5333	6.9145 6.8855	71.7764 72.9614	71.8750 72.5000
scr1_sp1 scr2_sp1	0.5273 0.5290	6.9384 6.8762	72.7157 72.8765	72.5000 72.5000

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Capturing Translational Divergence

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Capturing Translational Divergence

Nominalisation

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Capturing Translational Divergence

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Outline

Tree Alignments

Translational Divergences

Automatic Tree-to-Tree Alignment

Evaluation

Conclusions & Future Work

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Conclusions

- ▶ aligner performance is better at the phrase level than the lexical level
- ▶ imbalance between precision and recall at the lexical level
 - ▶ aligner uses GIZA++ word-alignment probabilities
 - ▶ GIZA++ prioritises broad coverage over high precision
 - ▶ in terms of capturing translational divergences between tree pairs, the preference is for the opposite
- ▶ it is appropriate for tree-alignment to prioritise precision over recall
- ▶ MT systems should use high-precision tree alignments *in conjunction with* broad-coverage models to preserve robustness

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Tree Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

Future Work

- investigate alternative word-alignment methods to further improve the accuracy of the tree-alignment algorithm
- investigate the impact of imperfect parse quality on tree-alignment
- ▶ investigate the extraction of translation models from automatically-annotated parallel treebanks

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation

The End.

Capturing Translational Divergences with a Statistical Tree-to-Tree Aligner

Mary Hearne, John Tinsley, Ventsislav Zhechev & Andy Way

Free Alignments

Franslational Divergences

Automatic Free-to-Tree Alignment

Evaluation