

Automatic Evaluation in MT system production

Gr. Thurmair, Linguatec

MT Summit XI Copenhagen 2007-09-10

Outline

- Quality lifecycle in MT system production
- Automatic metrics methodology
- Example case

Quality Management in MT production

- Automatic evaluation is seen in the context of MT system development
 - linguistic components development
- system development follows general software development technology
 - best ratio between investment and quality improvement
 - planning requirements (time, resources, functionality) also for linguistic components

- Requirement phase
 - where are significant quality problems in the current system
 - previous evaluations
 - customer feedback
 - competitive evaluations
 - definition of thematic areas to work on
 - dictionary coverage
 - long complex sentences
 - 1:n transfers
 - proper name recognition
 - anaphora
 - spelling errrors and correction possibilities

- Specification phase
 - creation of large data collections to study the phenomenon
 - monolingual, bilingual
 - Try to find rules / heuristics to ,solve` the problem
 - go through a lot of material (e.g. proper names)
 - not for mark-up for automatic learning
 - but for knowledge extraction
 - specify how the problem can be solved
 - changes / adaptations in dictionaries
 - changes in grammars
 - adding new system components
 - (interaction with other system components)

- Implementation Phase
 - create all linguistic resources
 - dictionaries, grammars
 - corpora, training data
- Component test
 - create test material
 - phenomena in isolation
 - phenomena in context
 - thematic corpora for certain phenomena
 - canonical analysis results or test translations
 - do quality evaluation
 - how many of the analysed phenomena are correct?
 - to which extent can the problem be mastered?

- System test
 - lingware
 - side-effects of analysis on other lingware parts?
 - improvement deterioration analysis
 - overall quality gain
 - overall system
 - interaction with other components
 - dicitonary coding, translation memories, ...
 - effect on system performance / resources
- Evaluation
 - measure quality improvement
 - start next development cycle

Test corpus

- Test corpus design
 - representative for system use
 - **multi-domain**, multi-texttype, multi-purpose
 - fair coverage of linguistic problems
 - sentence length, input errors, <multi-sentence>
 - significant size ...
 - all system aspects
 - translation options, additional dictionaries and memories
- Test corpus creation
 - reference translations created by machine
 - postedited into grammatical sentence
 - faster than human 🙂
 - closer to intended purpose
 - (not even required for relative evaluation)

Evaluation

- Quality evaluation
 - relative quality ("12% better than previous version")
 - compare with previous system runs
 - 3-point scale (,better worse same`) (not every difference deteriorates)
 - quality = % improvement minus % deteriorations
 - depends on type of corpus
 - absolute quality ("80% quality")
 - compare with canonical output
 - quality = distance to canonical output
 - quality = related to FEMTI criteria adequacy, fluency
 - 3-point scale (good understandable bad)
 - absolute quality percentage does not say too much
 - "we have a translation quality of 68%": ??
 - depends mainly on test corpus ...

2. Automatic measures

- Where would automatic evaluation be useful?
- Test methodology:
 - create system from training data
 - current setups: what is available
 - MT industry: all customer-relevant domains
 - create test set of reference translations
 - current setups: human reference translators
 - MT industry: MT-produced + post-edited
 - evaluate distance of output to reference
 - current setups: distance measures
 - MT industry: distance, plus: inspection of deviations
 "Automatic metrics are not designed to provide direction to R&D" (Miller)

Methodology: reference

- Reference translations by humans is problematic
 - "The only professional translator got worse scores than the translations of all seven non-professionals ... This is because the non-professional translations tended to be fairly literal and stayed as close to the source text as possible." (Culey 2003)
 - "The human translations that scored poorly were generally freer translations" (Culey 2003)
 - The better translators are the worse the scores become
- Number of translations seems to be less imprtant than closeness
 - (MT-produced output is closest to bad translators \odot)

Methodology: distance

- Pure word distance (WER) does not reflect the quality of the distance
 - Take the floppy out of the drive

Take the disquette out of the drive *Take the elefant out of the drive

- Hans ging nach Hause zurück
 John went back home
 John returned to his home
 *John went from home
- Relative word order is meaning-bearing!
 - the man killed the tiger the tiger killed the man
- (The score itself does not help much)

4. Example Case

- Topic:
 - English-to-Chinese MT system
- Purpose:
 - Determine competitive quality of our MT system
- Evaluated:
 - three rule-based systems (R1, R2, R3)
 - one statistical system (S1)

(Project Manager: Liu Lezhong)

Test Corpus

- From Chinese Linguistic Data Consortium
 - (ChineseLDC) <u>www.chineseldc.org</u>
 - 2005 863 National Machine Translation Test Set
- English \rightarrow Chinese
 - 492 sentences with four manual translations
- Chinese \rightarrow English
 - 489 sentences with four manual translations

Automatic Evaluation

English -> Chinese

	R1	R2	R3	S1
NIST	7.1361	8.4120	6.8843	8.2716
BLEU	0.2426	0.3441	0.2373	0.3699

Automatic Evaluation

Chinese -> English

	R1	R2	R3	S1
NIST	5.8890	6.9569	5.5654	7.3221
BLEU	0.1297	0.1893	0.1210	0.2237

Human Evaluation

Global quality evaluation

- Four point scale
 - 1 = syntactically / lexically correct, all information carried over (good)
 - 2 = minor mistakes in lexicon / grammar, most information carried over (understandable)
 - 3 = serious mistakes in lexicon / grammar, little information carried (partly understandable)
 - 4 = rubbish no information carried

Best Sentence Analysis

- for each sentence: which system produced the best translation
- Error Analysis
 - for our candidate: what are the main sources of error?

Human Global Evaluation

English -> Chinese

Human Global Evaluation

Chinese -> English

Best Sentence Analysis

English -> Chinese

Best Sentence Analysis

Chinese -> English

Error Analysis English \rightarrow Chinese

dictionary gaps -> increase to > 400K

•

– wrong transfer selection (1:n translations): neural transfer

Result

- Relation of automatic vs. human scores is not stable
 some papers: it is parallel, others: it is different
- Could be due to the measure
 - word difference (WER) can be positive or negative
 - strongly depends on the reference translation
- Automatic score does not really help
 - "We have translation quality of 63%": ??
 - there are too many parameters to be taken into account
- System development needs hints for improvement
 - evaluation and error analysis require human intelligence

Task-based evaluation

- Machine Translation is successful if it achieves productivity gain
 - Translation of more material in shorter time
- This is how the market decides
- It is not a quality measure!
- Productivity can be increased by many means
 - good editor support
 - translation memories, fast dictionary update, ...

Thank you for your attention

g.thurmair@linguatec.de

Quality criteria: Fluent but inadequate

<Source>倒塌居民房屋2.6万间,损坏房屋59455 <human> Destroyed houses amounted to 260,000, and damaged ones numbered at 59,455. <SMT>26,000 housing residents collapse, damaged houses

59455 companies.

<Source>心理医生指出,很多人胖是因为能吃。

<human>Psychologists point out that obesity is linked to one's capacity to eat.

<SMT> psychologists noted that because many people did gain.

<Source>全市的6条省级以上交通干线和近30条普通公路受损,9座桥 涵被毁。

<hr/>
<human>Six provincial highways and 30 public roads in the city were destroyed, and nine bridges were destroyed.</s>
<SMT>the six provincial highway and nearly 30% of ordinary roads damaged, 3,250 destroyed nine blocks.

Alternatives

- Can formal measures provide (indirect) indication for quality?
 - conclude overall quality from "easy" domain
 - named entity translation
 - noun phrases / compounds
 - still we would want to have the kind of errors

Automatic Procedures in Machine Translation Evaluation

Workshop

MT Summit XI Copenhagen 2007-09-11