
Recursion Problems in Concatenation:

A Case of Korean Morphology

Kiyong Lee
Department of Linguistics

Korea University
Seoul 136-701, Korea

November 10, 1995

Abstract

Without properly constraining recursions in generation, no language
system can effectively operate. This is especially so with morphological
generation, for each well-formed word must be finite in length and is ac-
cepted as such only when it actually occurs in text or ordinary usage.
This difficulty is compounded when a language system tries to maintain
a single rule of concatenation and apply it repeatedly in order to combine
a nominal or verbal stem with a sequence of suffixes in a time-linear man-
ner. In an agglutinative language like Korean, however, it can easily be
demonstrated how a language system like Malaga, based on time-linear
grammars like Hausser's [1] Left-Associative Grammar, can properly be
implemented to constrain undesirable recursive loops in generation. Both
nominal and verbal concatenations in Korean are treated in this paper to
show how infinite loops can be blocked by imposing appropriate matching
conditions on two adjacent input strings to concatenation.

1 Introduction

In Generative Grammar, the infinite magnitude of natural language is accounted
for in terms of the notion of recursion. Without it, no syntactic embedding as
in relative clause formation or that-complementation in English or even repeated
modification as in an adjectival phrase "very, very, very long" can be explained
with mathematical elegance.

In an ideal agglutinating language there is no problem of morphological re-
cursion because the number of suffix classes is finite and their order of occurrence
is fixed:

(1) Stem--SX1--Sx2--....-nn

Furthermore, each position may be filled only once.

215

However, Korean deviates from the ideal type of an agglutinating language,
because certain suffixes may occur in a reversed order:

(2) Stem--...SX1.--sx...SXn
(3) Stem--...sx--SX1...SXn

A particular suffix sx generally appears after SX1, but it may also appear
sometimes before SX1. The recursion problem resides in the possibility of re-
adding sx after the string ...sx–SX1 because sx normally occurs after SX1.

Using an implementation of Korean morphology in the Malaga system, this
paper will present a straightforward solution to the indicated problem of re-
cursion in Korean morphology. With one single rule for adding the particles
or endings, recursively applied, both nominal and verbal forms are successfully
generated, each consisting of a stem and a sequence of particles or endings.

2 Morphological Generation using Malaga

Malaga is an acronym for "Malaga Accepts Left-Associative Grammar with
Attributes" . As a language system' , it provides a general tool for both analyzing
and generating word forms as well as sentences or text from left to right in
a time-linear manner. In order to run the tool for a particular language like
Korean, several specific files must be written. Among them are two list files, say
korean.seg and korean.lex, and two rule files, korean.all and korean.mor.2

Consider the following nominal and verbal forms in the basic lexical entries
of Korean:

(4) korean.lex
a. nominal forms

[Phon: "pwumo",	 Class: N, Sem: "parent"];
[Phon: "kyoswu",	 Class: N, Sem: "professor"];
[Phon: "sensaeng", Class: N, Sem: "teacher"];

b. verbal forms
[Phon: "ka", Class: V, Sem: "go"];
[Phon: "cap", Class: V, Sem: "catch"];
[Phon: "ket", Class : V, Default_feat: ir, Sem:"walk"];

Each item here has the attribute Phon and a string, enclosed in double quotes,
for its value.3 Each form is also marked with an appropriate Class and Semantic
features.4 Among the three verbal stems, the first two are regular and the third
one is irregular and is marked with Defaultleat: ir.

The basic lexical entries listed in the file korean.lex are transformed into
their respective allomorphs by the rule file korean.all. This rule file has two
functions. One is to generate allomorphic forms based on the basic lexical file
korean.lex and the other to assign combination features to each generated item.
The generated file korean.lex.cat shows the result of applying the allormophic
rules to the basic lexicon. Consider, first, the following nominal forms generated
from the basic noun entries in (4a):

216

(5) Nominal Forms
a. surf: "pwumo", base: "pwumo",

cat: [Class: N,	 Sem: "parent",
Form: <terminal, root>, Syllab: <open>]

b. surf: "kyoswu", base: "kyoswu",
cat: [Class: N,	 Sem: "professor",

Form: <terminal, root>, Syllab: <open>]
c. surf: "sensaeng", base: "sensaeng",

cat: [Class: N,	 Sem: "teacher",
Form: <terminal, root>, Syllab: <closed>]

Unlike the basic nominal forms listed in (4a), the newly generated forms
all contain the same combination feature Form : <terminal, root>. As a
terminal, each nominal form as given here is a word in itself. As a root,
however, these nominal forms can undergo concatenation. The nominal stem
"pwumo" (parent), for instance, can combine with the Subject particle "ka" be-
cause the stem contains the feature Syllab: <open> which is required by the
particle "ka" On the other hand, the stem "sensaeng" (teacher) cannot take the
particle "ka" because it does not have the required feature. Instead, it can com-
bine with the Subject particle ".i" which has the feature Syllab_req: <closed>.
The allomorphy rule korean.all thus automatically assigns necessary combina-
tion features to each nominal form.

Verbal forms are also automatically assigned appropriate combination fea-
tures, as shown below:

(6) Verbal Forms
a. surf : "ka", base: "kata",

cat: [Class: V,	 Sem: "go",
Stem: <root>, Bridge: <nul>,

b. surf: "cap", base: "capta",
cat: [Class: V,	 Sem: "catch",

Stem: <root>, Bridge: <_u, _a>,
c. surf: "ket", base: "ketta",

cat: [Class: V,	 Sem: "walk",
Stem: <root>,

d. surf: "kel", base: "ketta",
cat: [Class: V,	 Sem: "walk",

Stem: <root>, Bridge: <_u, _e>,

Form: <bse>,
Syllab: <open>]

Form: <bse>,
Syllab: <closed>]

Form: <bse>,
Syllab: <closed>]

Form: <non_bse> ,
Syllab: <d_liquid>]

Among the four blocks listed above, the first two are for the regular verbs
"kata" (go) and "capta" (catch) and the other two are for the two allomorphic
forms "ket" and "kel" of the irregular verb "ketta" (walk). 5 Each block contains
both old and new information: the original values for the attributes Class and
Sem are retained, while the surface and base forms and combination features
are newly introduced. As will be shown presently, a difference in combina-
tion features causes different paths of concatenation. Hence, two different allo-
morphic forms with different combination features undergo different paths of con-

217

catenation. For example, the path "kel.e.ss.ta" (walk-e_Bridge-Past-Declarative)
is acceptable, while the other allomorph "ket" (walk) cannot undergo the same
path of concatenation.

Finally, the rule file korean.mor consists of three parts: the initial, com-
binatorial, and terminating. The initial part introduces nominal or verbal stems
from the generated allomorph list and then specifies a set of possible rules that
may apply to them. These stems may go through combination processes or
directly go to the end rule, which recognizes the input as well-formed and then
declares it as successful output.

In our Korean_Malaga, the combinatorial part contains only one rule. This
single rule concatenates a stem with a particle or ending. It may, however,
apply again and again recursively to allow a stem to take more than one suffix.6
The word form "pwumo.nim.kkeyse.nun" (parent-honorific_suffix-honorific_SBJ-
Topic), for instance, consists of a nominal stem "pwumo" (parent) and three
particles "nim" (honorific suffix), "kkeyse" (honorific Subject marker), and "nun"
(Topic marker). It is thus generated by undergoing the combination rule three
times with the stem taking a particle one by one from left to right.

3 Blocking Recursions

Unless properly constrained, Korean_Malaga may generate infinite strings like
(7) , as has been attested in the process of constructing the system.

(7) infinite recursions
a. Immo .nim.nim.nim. . .

parent-honorific-honorific-honorific...
b. cap.u.si.ess.u.si.ess.u.si.ess...

catch-u_Bridge-honcrific_end-Past-u_Bridge...

Despite the problem of infinite recursion, our proposed system allows re-
cursive rule application. Since the Korean_Malaga system contains only one
combination rule, named combine, which may apply recursively, there are only
two possible ways of ordering rule appliation:

(8) Rule Paths
a. stem - success
b. stem - combine .	 . success

In analyzing a word form, Malaga traces the derivational path (or paths),
represented in a tree form, which shows what rules have been applied in what
order.

The rule combine concatenates two input strings in a straightforward man-
ner from left to right without any deletion or alteration of any parts of them. This
is based on the fact that all allomorphic forms are pre-generated and ready for
morphological combination, as required by the surface compositional approach
of Left-Associative Grammar.

218

Here is an example for combining the allomorphic form "kel" (walk) with the
conditional verbal ending "myen" through the bridging vowel ".u" .

(10) kel.u.myen
walk-u_Bridge-Conditional

The form "kel" is pre-generated from the basic form "ket" by the allomorphy
rule korean.all and contains appropriate combination features. Because of these
specific features, particularly the feature Bridge: <_u,_e>, the form "kel" can
take the bridging vowel ".u" and then the ending "myen" . 7 The bridging vowel
here turns the feature Syllab: <d_liquid> of "kel" into Syllab: <open> so
that the combined string "kel.u" may now combine with the terminal ending
"myen" which requires the value of the Syllable to be open.

It should now become clear that each application of the rule combine is
constrained by relevant combination features of the two input strings. The rule
is designed to apply if a stem or the left element contains the features which are
required by a suffix or the right element; otherwise, it fails to apply.

The general mechanism of constraining concatenation processes is simple
and straightforward. It is, however, a completely different matter to implement
a particular system like Korean_Malaga, especially dealing with recursion. Here
are three types of recursion that may be of interest to the implementation of
any morphological generator: [i] simple repetition, [ii] reverse order, and [iii]
non-adjacent recurrence.

3.1 Simple Repetition

The most frequent problem of recursion occurs from simple repetition as is
illustrated by:

(11=7a) pwumo.nim.nim.nim...
parent-honorific-honorific-honorific...

Suppose we introduce the particle "nim" into the lexicon, as tentatively spe-
cified below:

(12) [Phon: "nim",	 Class_req: N, Form_req: <root>,
Result_Syllab: <closed>,	 Hon: <referent>]

Since the particle "nim" has the two features Class.req: N and Form.req:
<root> which require its preceding string to have the values, namely N and
root, for the attributes Class and Form, it can be attached to any Nominal
root form, say "pwumo" (parent).

(13) [Phon: "pwumo",	 Class: N,	 Sem: "parent",
Form: <terminal, root>, 	 Syllab: <open>]

By combining these two, we obtain:

219

eykey" (Dative).

	

DF	 GF

	

man	 .i

only	 Subject

	

man	 .ul

Object

GF
kkeyse
Subject
.eykey
Dative

DF

man
only

man

Ct.

(14) [Phon: "pwumo.nim",
Sem: "parent",
Syllab: <closed>,

Class: N,
Form: <terminal, root>,
Hon : <referent>];

The newly combined form here has inherited the features Class: N, Sem:
"parent", and Form: <terminal, root> from the stem and the feature Hon:
<referent> from the particle. On the other hand, the original feature Syllab:
<open> of the stem has taken a new value <closed> because the particle
contains the feature Result. Syllab: <closed>. The features Class_req: N
and Form_req: <root> of the particle are no longer necessary and thus deleted.

The resultant form (14) with its features, however, allows another concaten-
ation with the particle "nim" , for it is again an N root. This process may then
be repeated infinitely. In order to block such an undesirable repetition, a new
feature Result_Form: <terminal, honorific> must be added to the original
record (12) of the particle "nim" , as in (15):

(15) [Phon: "nim",	 Class_req: N, Form_req: <root>,
*** Result_Form: <terminal,honored>,

Result_Syllab: <closed>,
Hon: <referent>],

The added feature, here marked with ***, then successfully eliminates the pos-
sibility of repeatedly concatenating the particle "nim" to a nominal root, since
the resulting word form "pwumo.nim" is no longer a root, but an honorific
form.

3.2 Reversed Order

The second type of problems in recursion involves the discourse function (DF
henceforth) particle "man" (only). As shown below, it can occur both before
and after a grammatical function (GF henceforth) particle : it occurs be-
fore the GF particle ".i" (Subject) or ".ul" (Object), but after the GF particle
"kkeyse" (Subject) or

	

(16)	 N_root
a. pwumo.nim

parents
b. pwumo.nim

	

(17)	 N_root
a. pwumo.nim

parents
b. pwumo.nim

220

Here the generation process may create a possibly infinite loop from GF to
DF("man") to GF and then to DF ("man"), generating an ill-formed string like
"pwu.mo.nim-kkeyse-man-kkeyese-man-kkeyse...man,u1" .

The proposed time-linear approach augmented with feature structures re-
solves such a recursive loop by setting up two subtypes of GF-assigning particles
with different combination features. Consider the following two particles:

(18) GF-assigning Particles
a. [Phon: ".i",	 Class_req: N, Syllab_req: <closed>,

Form_req: <root,honored,plural,DF_man>,
Result_Form: <terminal>, 	 GF: <SBJ>];

b. [Phon: "kkeyse", Class_req: N,
Form_req: <root,honored,plural>,
Result_Form: <terminal,AF>, Result_Syllab: <open>,
GF: <SBJ>,	 Hon: <SBJ>];

Both of the particles carry the information GF: <SBJ>, thus each assigning
the grammatical function SBJ to the nouns to which they are attached. They,
however, differ from each other in other respects. Specifically, the genuine GF
particle ".i" can be suffixed to a nominal stem that ends in the particle "man"
with the feature Form: <DF_man>, as specified in (19), but the honorific
Subject particle "kkeyse" cannot.

(19) [Phon: "man",	 Class_req: N,
Form_req: <root,honored,plural,AF>,
Result_Form: <terminal,DF_man>,
Result_Syllab: <closed>,	 DF: <exclusive>];

Hence, the modified system can successfully analyze a well-formed string like
"pwumo.man.i" (parent-DF(only)-SBJ), while blocking an ill-formed string
"pwumo.man.kkeyse" (parent-DF(only)-SBJ).

Here are the actual results of analyzing both of the strings on Korean_Malaga:8

(20) Successful Analysis
malaga> roman
malaga> ma { .pwu .mo . man . i}
complete analyses for "{.pwu.mo.man.i}":
1: "f.puu.mol/{.man}/{.i}", [Phon: "{.pwu.mo.man.i}",

Class: N, Sem: "f.pwu.mol_parent", GF: <SBJ>,
DF: <exclusive>]

The morphological analysis ma of the romanized string { .pwu.mo.man.i} here is
recognized as successful. On the other hand, the complete analysis of the string
{ .pwu.mo.man.kkey.se} is shown to fail. The analysis goes through only up to
the string { .pwu.mo.man}.

221

(21) Complete Analysis Failed
malaga> ma {.pwu.mo.man.kkey.se}
complete analyses for "f.pwu.mo.man.kkey.sel":
none
malaga> longest
longest analyses for "{.pwu.mo.man.kkey.se}":
1: "{.pwu.mo}/{.man}", [Phon: "{.pwu.mo.man}", Class: N,

Sem: "f.pwu.mol_parent", Form: <terminal, DF_man>,
Stem: nil, Bridge: nil, Syllab: <closed>, DF: <exclusive>]

Now to allow the DF "man" to occur after the honorific SBJ marker "kkeyse",
we can introduce two types of "man" , one occurring before a genuine GF marker
like ".i" another occurring after the honorific SBJ marker "kkeyse" . But this ap-
proach does not seem to be too elegant. To avoid introducing two different types
of the particle "man," a feature inheritance mechanism is built into the rule of
concatenation. In this way, two different occurrences of a single type are treated
as two different tokens. Specifically, the occurrence of "man" immediately after
the string N_root inherits the attribute root from the nominal root and thus
may concatenate with a GF particle like ".i" or ".u1" . On the other hand, the
occurrence of "man" after the string N_root-"kkeyse" (GF_AF) 9 inherits the
adverbial function (hence AF) attribute instead of the feature root. Because
of this inherited AF attribute, the string N_root-"kkeyse" (GF_AF)-DF may
take another DF particle like ".un" (Topic), thus generating a well-formed string
like:

(22)	 N_root	 GF_AF	 DF	 DF
a. pwumo.nim kkey.se man	 .un
b. pwumo.nim .ey.key	 man	 .un

In this example, the string N_root-(GF_AF)-DF_man-DF is complete, be-
cause the second DF is a terminal particle. The repetition of "man" occurring
in the second DF position is also blocked by a general mechanism, again an
inhertance mechanism, that suppresses repetition of tokens of the same type.

3.3 Non-adjacent Recurrence

Recursion phenomena may also occur in verbal concatenations. Consider:

(23) V_root	 Bridge Honorific Ending
a. cap	 .0	 myen

catch	 Conditional
b. cap	 .0	 si	 myen

Here the ending "myen" requires a bridging vowel ".u" to be concatenated to a
verbal root like "cap" (catch) ending in a consonant. The honorific ending "si"
has the same requirement for concatenation.

222

Although the bare root like "ka" (go) may directly concatenate with the ending
"myen" , the past tense marked stem "cap.a-ss" like the bare root "cap" requires
the bridge ".u" because they each end in a consonant.

(24) V_root Bridge Past Bridge Ending
cap	 .a	 ss	 .0	 myen

These two paths in (23b) and (24) may combine into a longer path, as in:

(25) V_root Bridge Honorific Bridge Past Bridge Ending
cap	 .0	 si	 .e	 ss	 .0	 myen

Unless properly constrained, this path may, however, run into an infinite loop,
generating strings like:

(26) * cap-.u-si-.ess-.u-si-.ess-.u-si-myen

This loop can again be broken by differentiating two different tokens of the
bridging vowel ".u": the one with the attribute root inherited from the adjacent
verbal root and the other with the attribute finite from the adjacent past particle
".ess" . Since the honorific particle "si" only attaches to a root or a string with
the attribute root, it can attach to a string like "ka" or "cap-.u" , but not to a
string like "ka-si-.ess-.u" or "cap-.u-si-.ess-.u" .

4 Conclusion

In Korean_Malaga, a single concatenation rule applies recursively to combine a
stem with a sequence of suffixes. This makes the system simple and elegant.
However, unless it is properly constrained, some combination processes never
stop, creating the phenomena of infinite loops in recursion. In order to prevent
such undesirable recursive loops, a feature inheritance mechanism differentiating
tokens from types has been proposed here.

Because of this mechanism, different matching or congruency conditions are
presented for concatenating two input strings at each step. Consequently two
different occurrences of an identical suffix are treated as different tokens, but of
the same type. Hence, such a suffix is listed only once in the lexical entries.

The Korean_Malaga system using Hangul Charaters successfully runs on
mule, a multi-lingually enhanced emacs editor, in a shell-mode without undesir-
able recursive loops. Generation processes can easily be tested by executing the
command paradigm with a sample list of stems, particles, and endings.'°

References

[1]R Hausser. Computation of Language. Berlin: Springer-Verlag, 1992.
[2]B Beutel. Malaga: An Implementation Langauge for Left-Associative Grammar.
Unpublsihed manuscript. Computerlinguistk, Universitit Erlangen-Nurnberg, 1995.

223

[3] Kiyong Lee. Hangul, the Korean Writing System, and Its Computational Treatment.
LDV-FORUM: Forum der Gesellschaft fur Linguistische Datenverarbeitung, 11.2, 26-
43, 1994.

Acknowledgments: This paper is to be presented at the 10th Pacific-Asian
Conference on Language, Information, and Computation hosted by City University of
Hong Kong from 27-28 December, 1995. I am grateful to Chin-W. Kim of Illinois and.
Korea Universities, Jae-Woong Choe, Myung-Yoon Kang, Taegoo Chung of Korea Uni-
versity, Roland Hausser, Bjorn Beutel, Marcus Schulze, Gerald Schiiller, and Oliver
Lorenz of Erlangen University, Germany. Without their indispensible and often de-
manding comments and corrections, this paper would not have survived to see its
completion.

Notes

'Implemented in ANSI-C by Bjorn Beutel and his colleagues under the supervision of
Roland Hausser, Erlangen, Germany. See Beutel [2] for details.

2 A11 these files must have the same name but different extensions. With these files in-
corporated into Malaga, the compiled system Korean..Malaga runs on mule, an acronym for
mit-lingual Enhancement to GNU emacs, in a shell mode.

The file komseglists all the segments like word class names, attributes or value names
that are to be used in other files. Examples are Pirce, class, V, Sens and root.

The file koreanlex consists of morphemes or basic lexical items. Each item is repres-
ented as a record consisting of attribute-value pairs. Below is listed part of the file for the
implemented system Korean..Malaga.

3 Although the program KoreanIVIalaga actually uses Hangul characters encoded in KSC5601
Coding System or the so-called precomposed character set, all Hangul strings are romanized
by the modified Yale system in this paper for the sake of the foreign audience. See Lee [3] for
details.

4 For the present audience again, the value for Semis provided with an English equivalent.

6 The feature Defauk_feat: it is deleted here because it is no longer necessary.

6The term suffix here is used to cover both nominal particles, verb endings or anything
else that may be attached to the end of a stem.

7 Because the other allomorphic form "ket" does not have this feature, it cannot participate
in this combination.

8The Korean.Malaga can accept input strings in both Hangul and romanized characters.

9 Here the particle "kkeyse" is treated as a GF_AF marker, namely a GF-assigning AF
marker, although no such segment is actually used for specifying the record of the particle
"kkeyse".

'°A Unix or Linux version of the modified system Korean_IVIalaga will soon be availabe to
the public from the www-site at http://www.linguistik.uni-erlangen.de/Malaga.en.html.

	PACLIC10-215.pdf
	PACLIC10-216.pdf
	PACLIC10-217.pdf
	PACLIC10-218.pdf
	PACLIC10-219.pdf
	PACLIC10-220.pdf
	PACLIC10-221.pdf
	PACLIC10-222.pdf
	PACLIC10-223.pdf
	PACLIC10-224.pdf

