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Abstract
Comprehension is determined by the content of memory. The verbalized
concepts reflect the information that is in the focus of attention. Mental models
of text must be formed in order to achieve coherence in language
understanding. Constructing a mental model requires continual interaction
between the text and the reader's linguistic, pragmatic, and world knowledge.
In this article, a connectionist framework is proposed for the formation of
mental models that occurs during comprehension. A unification and spreading
activation model are used to simulate the processes. The system is tested using
children's stories. Results attest the validity of the model. Thus, our design
contributes to the formation of a durable and functional mental representation
of the text information.

1. Introduction
Language comprehension is mediated by a complex set of processes that operate
on the representations at three main different levels: lexical, syntactic and
semantic. Early research on aspects of text representation tended to look at
general questions about, for example, the availability of representations of
surface form. More recently, comprehension is modeled as construction of
mental models of text [1]. Several conclusions about mental representations of
discourse have been reached. First, such representations are structurally similar
to part of the world rather than to any linguistic structures [2]. "Distilled"
meanings of the text and their interrelations are represented directly. This
representations are built up as the text is read. Information not explicit in a text
may be included in the representations of its content, particularly if it is required
to establish links between parts of its content [3]. At any point in a text, the
representation constructed up to that point is the context for the interpretation
of the next sentence. In particular, it restricts the set of possible referents for
anaphoric expressions, and allows such expressions to be interpreted correctly in
context [4]. Given this agreement as to the theoretical importance of mental
models, however, it is surprising that there is little agreement as to exactly what
constitutes a mental model, and there is little research demonstrating the
construction of a putative mental model while reading. In this article, our
specific goal is to delineate a theoretical connectionist system that generates the
cognitive representation for narrative comprehension. In particular, attention has
focused on the factors of argument overlapping [5] and situational continuity
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[6]. Researches in discourse processes have shown these two major factors
facilitate readers to construct the mental models. Argument overlapping is
analyzed in terms of the number of arguments overlapped. Propositions having
the greatest degree of overlapping with other propositions are proved to be the
most important. In addition, Gernsbacher [7] has advocated that readers
construct mental structures while reading a text and they try to map any
incoming information onto the evolving structure. Sentences that maintain a
previously established time frame are more likely to be mapped onto developing
structures, as are sentences that maintain a previously established location and
sentences that are logical consequences of a previously mentioned action or
event. For instance, it is relatively easy to construct a representation of a
situation that involves a chronologically ordered chain of causally related events
and action in one location. In such case, incoming situational information can be
readily be integrated with the current mental model.

Applying connectionism in discourse processes has received a great deal
of attention recently [8]. There are many extremely promising aspects of
connectionist work that map quite well with the perspective developed within
the spreading activation network. Spreading activation network is represented
by a set of nodes fully connected to each other. It is a pattern categorization
device inspired by neurophysiological considerations. The network has
additionally been applied to fairly diverse range both in neural and psychological
phenomena [9]. It provides a useful model of human learning and concept
formation [10]. In this article, a brief discussion on how a sentence is distilled in
a unification process is first presented. Second, a spreading activation network,
which nodes are the propositions and the links are derived from the effects of
argument overlapping and situational continuity, is formed and trained from the
narratives. It is based on the theory that raw linguistic knowledge is said to
undergo a reduction to essences and are encoded for storage and recall. The
essences are often used to refer the residue of information that remains after a
delay. Human inferences are the predisposition of reasoning to operate on traces
that are as near as possible to the essences formed from past experience [11].

2. Overview of System Architecture
The whole system consists of several major constituents: the parser, logical and
grounding tiers, working memory (WM), sentence memory and a long-term
memory (LTM) as shown in Figure 1. The LTM has procedural component. The
procedural LTM stores the causal hypotheses and a set of commonsense
inference rules. Firstly, all the linguistic cues are used to retrieve knowledge
from the LTM after parsing. Vectors of knowledge or rules are recalled and
displayed on the logical tier. The logical tier represents the localist
representations of concepts which are connected to the other relevant nodes.
The grounding tier contains all the subsymbolic representations of concepts in
the logical tier. The representations encode the knowledge associated with the
concepts. Every concept in the logical tier is linked with its corresponding
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subsymbolic representation in the grounding tier. The grounding tier roughly
corresponds to reasoning at a subconceptual level.

Figure 1: System Architecture
During comprehension, a unification process takes place in working

memory in order to resolve the semantic ambiguity. After the process, the
elements are contextually relevant and all contradictions have been eliminated.
The working memory then contains the "distilled" items, associative and
contextual information of the investigated sentence and is then transferred into
the sentence memory.

In a separate strand, to call a sequence of sentences a "narrative" is to
imply that the sentences display some kinds of mutual dependence; they are not
occurring at random. These dependence may be lexical, logical, spatio-temporal
or thematic. In order to represent these dependence in our analysis of narrative
comprehension, in concert with all sentence memory in the narrative, a spreading
activation network, W, with each node representing the distilled proposition
after the unification processes, is constructed. The weights, Wu, is relied on two
major linguistic dependence (i) the argument overlapping (ii) the situational
continuity, i.e. whenever the propositions are related, in the sense of the
dependence, the weights between them are assigned a positive number. Thus,
high activation in ones will produce high activation at the others. The network is
then subject to a learning process, in which it will eventually reach a state of
equilibration via the interactive activation and competition mechanisms. As a
result, a stabilized network, a mental-like model, is obtained. Further discussions
of the processes are as follows.

3. The Unification Process
In working memory, knowledge is represented as an associative net and
retrieved from both tiers. Each element, or node, of the net has an associated
activation level. The elements may represent words, phrases, propositions,
grammatical structures or objects in the external world. Connections among
elements have strength values. The strength values are calculated through a
knowledge extraction process. The process needn't be very sophisticated. It is to
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Node Name
N1 Go(Rosalind, Store]
N2 shopping
N3 gift
N4 storehouse
N5 warehouse
N6 department_store
C1 Location(store)
C2 Act(store)
C3 Agent(Rosalind)

No. of iterations :11
Tolerance: 0.001

N2NI

be just powerful enough so that the right elements are likely to be among those
generated, even though irrelevant or even outright inappropriate will also be
deduced. It is followed by a unification process. The process is used to integrate
the meanings in the memory into a coherent whole. It is used to strengthen the
contextually appropriate elements and inhibit unrelated and inappropriate ones,
in which smart and complex deductions can be achieved.

U(m)
1.000
0.927
0.616
0.005
0.002
0.854
0.835
0.054
0.773

Figure 2: After reading a sentence, Rosalind went to a store to buy a present, a fully
interconnected network with rough, or even outright contradictory nodes is formed and
subjected to a unification process in working memory. The top right column shows the
asymptotic activation after the process. It is apparent that incorrect meaning of store,
storehouse, is deactivated.

This approach is to reduce the dimensionality of the stimulus so that a
very complicated stimulus could act as if only a small number of independent
elements are involved. In other words, this process can be used to exclude
unwanted elements from the working memory, as an example shown in Figure 2.
Some of the main properties of the unification process are summarized as
follows:
(i) Each working memory element represents a proposition or concept.
(ii) Associated with each working memory element is a real number called its

activation level, which represents the element's strength. Let a vector U is
modelled in N-dimensional space, then U = (u 1, u2, uN), where u1 is the
activation level for the element i.

(iii) Production firings direct the flow of activation from one working memory
element, the source, to another working memory elements through the
knowledge matrix K. U(t+ 1) = T[U(t)K] where U(t) is the activation
vector at some discrete time t, T is the vector normalizing operation.

(iv) The process stops at iteration m if 1U(m) U(m-1)I < t o where tu, the
tolerance, is another preset threshold which is used to control the number of
inhibited elements in the process.

Initially, U(1), representing the initial activation values of all concepts, is
passed into the knowledge matrix, K. Mathematically, unification process is a
vector-matrix multiplication. Continued spreading by repeated vector
multiplication leads to equilibration. The final activation vector, U(m), shows
how strongly related items have strengthened each other, while unrelated or
contradictory items have a negative or 0 activation value. The process continues
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for the next sentence as another cycle in the narrative. The details of the
unification process is omitted intentionally due to the limited scope of this
article, however, the interested readers are referred to the author' s publications
[12-16].

4. Learning in Spreading Activation Network
Text processing is a sequential process. When a new sentence is comprehended,
part of the previous sentences must also participate in the understanding. In
Halliday's terminology [17], sentences are cohesive to the extent that they
remain many expressions whose interpretation depends in some way on the
interpretations of the prior expressions in the narrative. In order to examine the
factor in comprehension, the previous analyzed sentences are maintained in the
focus of attention when a new sentence is investigated in our unification process.
Buffers are designated to carry the previous most activated propositions over
into the current processing cycle, in the hope that they would serve as common
bridging elements between the sentences. The change of the activation in each
buffer indicates the degree of overlapping of each previous proposition to the
current investigating proposition. Let AO = (A00 be a square matrix
representing the weights defined only by the effect of argument overlapping, or
the cohesive links.

AOu = exp (–e 1.4 I)	 where

— 
(change of activation of buffer i 

activation of buffer i	
(1)

Proposition j

Cohesive links go a long way towards explaining how the sentences of a
narrative hang together, but they do not tell the whole story. A narrative plainly
has to be cohesive as well as coherent, in that the concepts and relationships
expressed should be relevant to each other, thus enabling readers to make
plausible inference about the underlying meaning. Although causality, spatiality,
and temporality are the intertwining links in the situational continuity when
behavioral episodes are unfolded in narratives, we limit our scope in this article
to the discussion of causal continuity, simply because it is ascertained that
readers attempt to tie each event or fact encountered to the prior text or relevant
background knowledge [18]. To capture the causal relationships, each of the
subsequent statements is read in terms of whether it instantiates some
expectation of the previous statements. Let SC = (sq) be a square matrix
representing network connections defined only by the effect of causal links. In
our simulations, all pairs of processing units that are involved in the causal chain
are given a mutually excitation connections,

{SCI..—
> 0, if units i, j are coherent related	 (2SC	 ,	 otherwise

)0 

An overall matrix, W, of the spreading activation network, as shown in
Figure 3, is constructed by a combination of each independently linguistic
dependence discussed above.
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Figure 3: The distilled propositions are linked with each other in sentence memory in form of
a spreading activation network, W, where the links, Wu, are determined by the factors of
argument overlapping and situational continuity.

Each entry Wu in W is a numerical value that represents the connection
strength between the propositions. Further, our model takes the simplest
conceivable step of generalization by substituting a pair of oppositely-directed
links of equal weight. Each of connections carries the meaning, "is related to"
without discriminating the roles of cause or effect so that W is a symmetric
matrix; that is Wu = Wii such that

{p(0)/ /10,:i +032SC,i ), if AsOu or SCii � 0	 (3)Rif = —11,	 or otherwise

In (3), it is apparent that positive excitatory links, with values p(o) 1210i; +
€02SC,J), are between all the linguistic related nodes and negative inhibitory links,

are amongst the unrelated ones. co l , (02 are constants specifying the relative
importance of each effect and p is a coefficient that determines the rate of
convergence of the algorithm. Since W is symmetric, this ensures that the
spreading activation network will converge to a stable state. Whenever the
matrix W has been constructed, one can start the learning process to encapsulate
the mental-like model from the network, W. The model extracted via the
interactive activation and competition mechanisms. The algorithm of the
encapsulation of the model is summarized as follow:
Step 1: Construct the overall matrix, W, as shown in above. Initialize a state

vector for the propositions,
A(0) = (a i (0), a2(0),	 am(0)) where ai(0) is the initial activation of the
proposition i and M is the number of the propositions in the narrative.

Step 2: At each discrete time, t, activations spread among the nodes of
propositions and are updated by the following function:
A(t+ 1) = 13A(0) + 'yA(t) + aWA(t)

Step 3: Vector A(t+1) is normalized according to the saturation and habituation
functions
A(t+1) = [SAT (A(t+1))] a(t) where
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1 < x
SAT(x) =	 —1<x<1

-1, x < -1

Step 4: Reinforcement of Wii , is given by the modified Hebbian learning, where
81Vu(t) = Tilai(t+1) - ai(t)lai(t) + [ap+1) - cif(t)]ai(t)} where cp is the
learning rate.

Step 5: Apply steps 2 to 4 iteratively for a number of iterations
Step 6: The final link strength between each pair of node i, j in model is

= T(Wy) where
'F(x) -	 1 	 is the gain, 0 is the event linkage constant, and x is

1+e-k(x-9X)
the mean of x.

The algorithm is the modified version of Brain-state-in-a-Box model
(BSB) with M nodes which are highly interconnected and feedback upon
themselves. Information in this system is represented by an M-dimensional
vector. The system operates by accepting a pattern of neural activity and
amplifying that neural activation pattern through the feedback loop. In step 2,
the system receives a constant input, 13A(0), in which the initial activation of
each proposition is constantly present. The second term, 724(t), causes the
current state to decay slightly. This term has the qualitative effect of causing
error to eventually decay to zero as long as y is less than 1. The third term,
aWA(t), passes the current state through the matrix and adds more information
reconstructed from the cross connections. The saturation function SAT(x) is the
nonlinearity in the system in step 3. This confines the BSB state to the hypercube
[-1, 1]M. When released from the initial state, the BSB converges to one of the
stable vertices of the hypercube. In addition, a(t) is introduced as a habituation
variable into the system. It provides a mechanism to get the brain state out of a
corner it has gotten into. Once a node has reached its maximum firing rate, this
process becomes effective over a fixed period of time and lowers the input
sensitivity of the node, thus causing a decrement in the components of the
saturated subvector, as a consequence, which may leave the corner.

The formation and the reinforcement of the weights are represented in
step 4. The changes in strength of the weights are through modified Hebbian
learning. It is apparent that the strongest connections will tend to form between
pairs of nodes that maintain high levels of activation for a prolonged period of
time. Finally, the function 'F, in step 6, serves as a link transfer function. It is a
sigmoid function that enhances the effects of links by the gain with strength
above 0, the event linkage constant multiply with the mean Wu. It controls the
amount of links appearing in the contexts. This final stage of the encapsulation is
to screen the links and reduce background clutter in the emerging representation.
The selection process creates a threshold below which a link is unlikely to be
emitted as part of the output in the final mental-like model. It eliminates the
weaker connections which result from the formation of weak association.
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5. Simulations and Experimental Results
The prototype of the system is developed in C and implemented on a DEC
5000/20 under the UNIX environment. Simulation experiments are conducted.
We restrict ourselves, in this article, to stories describing sequences of events
which follow one another in approximately linear temporal sequences. However,
the ideas suggested here are certainty not only applicable to this restricted class
of stories. In our experiments, four children's stories by Stein and Clenn [19] are
analyzed in a series of simulations. Tables 1 & 2 show one such story, Tiger's
Whisker and the corresponding propositions so formed.

Once there was a woman who needed a tiger's whisker. She was afraid of tigers but she needed a
whisker to make a medicine for her husband who had gotten very sick. She thought and thought
about how to get a tiger's whisker. She decide to use a trick. She knew that tigers loved food and
music. She thought that if she brought food to a lonely tiger and played soft music the tiger would
be nice to her and she could get the whisker. She went to a tiger's cave where a lonely tiger lived.
She put a bowl of food in front of the opening to the cave. Then she sang soft music. The tiger
come out and ate the food. He then walked over to the lady and thanked her for the delicious food
and lovely music. The lady then cut off one of his whiskers and ran down the hill very quickly. The
tiger felt lonely and sad again.

Table 1: The Tiger's Whisker story

1. Exist(Woman)
2. Afraid(She, Tigers)
3. Need(She, Whisker)
4. Desire(She, Make(She, Medicine, Husband))
5. Sick(Husband)
6. Think(She, How_to_get(She, Tiger's Whisker))
7. Desire_to_use(She, Trick)
8. Know(She, Love(Tiger, Food and Music))
9. Think(She, Bring(She, Food, Lonely(Tiger)))
10. Think(She, Play(She, Music, Lonely(Tiger)))
11. Think(She, Nice(Tiger))

12. Think(She, Get(Whisker))
13. Go(She, Tiger's Cave)
14. Live(Tiger, Tigers Cave)
15. Put(She, Food, Front of Cave)
16. Sing(She, Music)
17. Go(Tiger, Front of Cave)
18. Eat(Tiger, Food)
19. Walk(tiger, Lady)
20. Thanks(Tiger, Her, Food and Music)
21. Cut(Lady, Tiger's Whisker)
22. Run(Lady, Down Hill)
23. Sad(Tiger)

Table 2: The Propositions of the Tiger's Whisker story

Figure 4 shows the activation changes of some previous propositions
while the 6th proposition, Think(She, How_to_get(She, Tiger's Whisker)), is under
analyzed. Clearly, the activation of the 5th proposition decays gradually to zero
due to the nonoverlapping arguments. In contrast, activations of the 3rd & 4th
propositions remain relatively high during the analysis. In our simulations, c, in
equation (1), is chosen to be 0.75. The final matrix, W, of the spread activation
network is formed and is subject to the learning algorithm as discussed in section
4. Re-arranged patterns of activation of the propositions are shown in Figure 5.
The three-dimensional mesh plot is interpreted by noting that the height of each
point in the mesh plot corresponds to the activation of a time-dependent feature
unit in the system. All points lying on the same horizontal line correspond to the
same proposition (e.g. 8. Know (She, Love (Tiger, Food and Music))) at different
points in time. All points lying on the same vertical line correspond to the values
of all features associated with a situation at a particular instant of time where
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time is ordered from the left-hand side of the graph to the right-hand side. In
Figure 5, the activation of the 23 propositions in the networks are indicated by
the height above or below the null activation level. It is apparent, after 14
iterations, the network reaches a state of equilibration eventually. All
propositions become saturated with activations { -1, 1} and the mental-like
model is thus formed.
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Figure 4: The activations change in the 3rd,
the 4th and the 5th propositions while the 6th
proposition is under analysis in the story. The
words, she, tiger's whisker, in the sixth
proposition are the overlapped arguments
which makes the activations in the
corresponding propositions remain high.

Figure 5: Change of the activation of the
propositions in the story of Tiger's Whisker,
during learning

6. Conclusions
In this article, we have discussed the issues in linguistic information that will
effect the comprehension. We are able to identify the general "thread" of the
discourse as well as the way that individual sentences fit together to achieve the
comprehension in narrative understanding, in particular, in the formation of the
deep level of the mental representation of discourse. The present study explores
the cognitive representation of narrative prose. A distinctive property of the
proposed architecture is that it incorporates the inferences that readers generate
on the basis of their knowledge about the world and language. An attempt is
also made in the article to generate the mental model. Our construction process
can be interpreted as a particular mental transformation of a given set of initial
sentences and concepts, based on the linguistic relations. Experiments show the
representation of texts as spreading activation networks captures important
aspects of the memory representation of the text and it may suggest one of the
formation of mental models in humans.
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